http://www.risc.jku.at/education/courses/ws2012/analysis/

Übungsblatt 11

Besprechung am **31.01.2013**

Aufgabe 1 Berechnen Sie die folgenden Kurvenintegrale:

a)
$$\int_{\gamma} \left(\cos^2(x) + \sin^2(y)\right) ds, \text{ wobei } \gamma \colon [0, 2\pi] \to \mathbb{R}^2, t \mapsto (\pi + t, \frac{\pi}{2} + t),$$

b)
$$\int_{\gamma} \frac{x}{4y+1} ds$$
, wobei $\gamma \colon [0, \sqrt{2}] \to \mathbb{R}^2$, $t \mapsto (t, t^2)$.

Aufgabe 2 Sei $\gamma \colon [a,b] \to \mathbb{R}^n$ eine messbare und differenzierbare Kurve und sei $\varphi \colon [a,b] \to [a,b]$ streng monoton steigend mit $\varphi(a) = a$ und $\varphi(b) = b$, so dass die Ableitungen von γ und φ stetig sind. Außerdem sei $D \subseteq \mathbb{R}^n$ so, dass $\gamma([a,b]) \subseteq D$, und $f \colon D \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie, dass gilt:

$$\int_{\gamma} f(x) \, \mathrm{d}s = \int_{\gamma \circ \varphi} f(x) \, \mathrm{d}s.$$

Aufgabe 3 Untersuchen Sie die gegebenen Reihen auf Konvergenz!

a)
$$\sum_{n=0}^{\infty} \frac{3^n - 2^n}{3^n + 2^n}$$

b)
$$\sum_{n=0}^{\infty} \frac{3n}{2n^2 - 1}$$

c)
$$\sum_{n=0}^{\infty} \frac{2 + (-1)^n}{2^n}$$

d)
$$\sum_{n=0}^{\infty} \frac{(x-3)^n (n+1)^{2013}}{n!}$$
 für $x \in \mathbb{R}$

Aufgabe 4 Bestimmen Sie die Extrempunkte der Funktionen f_1 und f_2 !

a)
$$f_1(x,y) = x^2 - 2xy + 6x - 2y + 1$$

b)
$$f_2(x,y) = e^{xy}$$

Aufgabe 5 Schreiben Sie ein Programm in Sage, welches als Input eine Kurve $\gamma \colon [a,b] \to \mathbb{R}^n$ und eine Funktion $f \colon \mathbb{R}^n \to \mathbb{R}$ nimmt, und folgende Größen symbolisch berechnet (d.h. keine Näherungswerte!):

- a) den Geschwindigkeitsvektor von γ ,
- b) die Länge $L(\gamma)$,
- c) und das Kurvenintegral $\int_{\gamma} f(x) ds$.

Konzipieren Sie Ihr Programm so, dass es für beliebige $n \in \mathbb{N}$ funktioniert, und testen Sie es an geeigneten Beispielen.