3. Übungszettel Lineare Algebra und Analytische Geometrie I WS 2012/13

- 1.) Alice ist nicht krank, oder Bob ist nicht fort. Wann ist der Satz wahr, falls: (a) der Satz mit ausschließendem Oder, (b) der Satz mit dem aussagenlogischen Oder interpretiert wird?
- 2.) Man versuche die folgende Behauptung auf einfache(re) geometrische Sätze zurückzuführen: In einem gleichschenkeligen Dreieck sind die Basiswinkel gleich groß.
- 3.) Man versuche die folgende Behauptung auf einfache(re) geometrische Sätze zurückzuführen: Seien A, B, C paarweise verschiedene Punkte auf einem Kreis. Falls der Kreismittelpunkt auf der Strecke (A, B) liegt, ist der Winkel zwischen den Strecken (C, A) und (C, B) ein rechter Winkel.
- 4.) Für welche Wahl von $a,b,c\in\mathbb{R}$ gelten die folgenden Behauptungen? (Man gebe eine ausführliche Begründung.)
 - (a) $\exists x, y \in \mathbb{R} : ax + by = c$.
 - (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : ax + by = c.$
 - (c) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : ax + by = c$.
 - (d) $\forall x, y \in \mathbb{R} : ax + by = c$.
- 5.) Sei P(x) ein 1-stelliges Prädikat über der Menge U. Man beweise:

$$|\neg (\exists x \in U : P(x))| = |\forall x \in U : \neg P(x)|.$$

6.) Für $n \in \mathbb{N}$ sei $\{W, F\}^n := \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \{W, F\}\}$. Wieviele n-stellige Wahrheitsfunktionen $f : \{W, F\}^n \to \{W, F\}$ gibt es? (Hinweis: Man untersuche das Problem zunächst für n = 1 und n = 2.)