Exercises discussed on January 29, 2013

All examples are meant to be carried out with the help of a computer algebra system!
49. Compare the output of the three commands described below of the packages zb.m and HolonomicFunctions.m for the sum

$$
s(n)=\sum_{k=0}^{n}\binom{n}{2 k}\binom{2 k}{k} 4^{-k}
$$

Can you determine a closed form solution for $s(n)$?
50. Zeilberger's algorithm does not always return the minimal order recurrence. Let

$$
s_{d}(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{d k}{n} .
$$

(a) Use the Annihilator command to derive a recurrence satisfied by $s_{2}(n)$.
(b) Use guessing to find a shorter recurrence for $s_{2}(n)$.
(c) Use closure properties to show that the guessed recurrence is correct.
(d) Find a closed form solution for $s_{2}(n)$.
(e) Try HolonomicFunctions and zb for the cases $d=3,4,5, \ldots$ What are your observations?

- Examples on how to use Zeilberger's algorithm with the package zb.m:
$\ln [1]=\mathbf{Z b}[\operatorname{Binomial}[n, k],\{k, 0, n\}, n]$
If ' n ' is a natural number, then:

$$
\text { Out }[1]=\{2 \operatorname{SUM}[n]-\operatorname{SUM}[1+n]==0\}
$$

$\operatorname{In}[2]=\mathbf{Z b}[$ Binomial $[n, k],\{k, 0$, Infinity $\}, n]$

Out $[2]=\{2 \operatorname{SUM}[n]-\operatorname{SUM}[1+n]==0\}$

The latter works because we have natural boundaries in this case.

- Examples on how to use HolonomicFunctions: Plug in the sum into the Annihilator command:
$\operatorname{In}[3]:=$ Annihilator $[\operatorname{Sum}[\operatorname{Binomial}[n, k],\{k, 0, n\}],\{S[n]\}]$
$\mathrm{out}[3]=\left\{S_{n}-2\right\}$
Given the summand $a(n, k)$, the command CreativeTelescoping returns two operators P, Q such that

$$
P \bullet a(n, k)-\Delta_{k}(Q \bullet a(n, k))=0 .
$$

$\operatorname{In}[4]=$ CreativeTelescoping $[\operatorname{Binomial}[n, k], S[k]-1, S[n]]$
$O_{0 t}[4]=\left\{\left\{S_{n}-2\right\},\left\{-\frac{k}{k-n-1}\right\}\right\}$
The argument $S[k]-1$ indicates that summation is carried out w.r.t. k, and $S[n]$ that a recurrence in n is to be determined.

