
Exercises discussed on January 22, 2013

46. Execute the algorithm HYPER step by step (with assistance of a computer algebra
system) to determine all hypergeomtric solutions of the recurrence

3(3n+ 5)y(n)− (9n2 + 27n+ 17)y(n+ 1) + (n+ 2)(3n+ 2)y(n+ 2) = 0.

47. Use the program Hyper.m to determine the solutions of the following recurrences:
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with c0 = 0, c1 = 1, c2 = 2.

48. Design an algorithm which takes as input two rational functions c0(x), c1(x) ∈ K(x)
and a hypergeometric sequence (an)n≥0 and which decides whether the equation

c1(n)sn+1 + c0(n)sn = an

has a hypergeometric solution (sn)n≥0. Assume for simplicity that c1(n) 6= 0 6= c0(n)
for all n ∈ N. (Hint: One way to handle this problem is to think of a substitution
that turns the equation into a telescoping equation and then Gosper’s algorithm is
applicable.)


