Exercises discussed on January 22, 2013

46. Execute the algorithm HYPER step by step (with assistance of a computer algebra system) to determine all hypergeomtric solutions of the recurrence

$$
3(3 n+5) y(n)-\left(9 n^{2}+27 n+17\right) y(n+1)+(n+2)(3 n+2) y(n+2)=0
$$

47. Use the program Hyper.m to determine the solutions of the following recurrences:
$2\left(3 n^{2}+7 n+6\right) a_{n}+(n+2)\left(3 n^{2}+n+2\right) a_{n+2}-\left(3 n^{3}+16 n^{2}+15 n+10\right) a_{n+1}=0$, with $a_{0}=0, a_{1}=-2$;

$$
\begin{aligned}
0= & \left(9 n^{2}+25 n+17\right) b_{n}-(n+1)\left(81 n^{4}+324 n^{3}+437 n^{2}+226 n+37\right) b_{n+1} \\
& +(n+1)(n+2)(2 n+3)(3 n+4)(3 n+5)\left(9 n^{2}+7 n+1\right) b_{n+2},
\end{aligned}
$$

with $b_{0}=-1, b_{1}=-2$;

$$
\begin{aligned}
0= & (n-1) n^{2} c_{n+3}-(n-1)\left(n^{3}+6 n^{2}+4 n+1\right) c_{n+2} \\
& +\left(3 n^{3}+6 n^{2}-3 n-2\right)(n+1) c_{n+1}-2 n(n+1)^{3} c_{n},
\end{aligned}
$$

with $c_{0}=0, c_{1}=1, c_{2}=2$.
48. Design an algorithm which takes as input two rational functions $c_{0}(x), c_{1}(x) \in \mathbb{K}(x)$ and a hypergeometric sequence $\left(a_{n}\right)_{n \geq 0}$ and which decides whether the equation

$$
c_{1}(n) s_{n+1}+c_{0}(n) s_{n}=a_{n}
$$

has a hypergeometric solution $\left(s_{n}\right)_{n \geq 0}$. Assume for simplicity that $c_{1}(n) \neq 0 \neq c_{0}(n)$ for all $n \in \mathbb{N}$. (Hint: One way to handle this problem is to think of a substitution that turns the equation into a telescoping equation and then Gosper's algorithm is applicable.)

