Exercises discussed on December 4, 2012

35. Let $C(x)=\sum_{n>0} C_{n} x^{n}$ be the generating function of the Catalan numbers. In the lecture we deduced from the equation $x C(x)^{2}-C(x)+1=0$ the explicit representation $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. What rules out the possibility $C(x)=\frac{1+\sqrt{1-4 x}}{2 x}$?
36. Prove or disprove that the multiplicative inverse of $C(x)$ (the generating function of the Catalan numbers) is holonomic.
37. Let $a(x) \in \mathbb{C} \llbracket x \rrbracket$ be an algebraic power series and suppose that $b(x) \in \mathbb{C} \llbracket x \rrbracket, b(0)=0$, is such that $a(b(x))=x$. Show that $b(x)$ is algebraic.
38. Let $\left(a_{n}\right)_{n \geq 0}$ be the coefficient sequence of an algebraic power series. Show that then the sequence of partial sums $\left(\sum_{k=0}^{n} a_{k}\right)_{n \geq 0}$ is the coefficient sequence of an algebraic power series.
