Exercises discussed on December 4, 2012

- 35. Let $C(x) = \sum_{n \ge 0} C_n x^n$ be the generating function of the Catalan numbers. In the lecture we deduced from the equation $xC(x)^2 C(x) + 1 = 0$ the explicit representation $C(x) = \frac{1 \sqrt{1 4x}}{2x}$. What rules out the possibility $C(x) = \frac{1 + \sqrt{1 4x}}{2x}$?
- 36. Prove or disprove that the multiplicative inverse of C(x) (the generating function of the Catalan numbers) is holonomic.
- 37. Let $a(x) \in \mathbb{C}[x]$ be an algebraic power series and suppose that $b(x) \in \mathbb{C}[x]$, b(0) = 0, is such that a(b(x)) = x. Show that b(x) is algebraic.
- 38. Let $(a_n)_{n\geq 0}$ be the coefficient sequence of an algebraic power series. Show that then the sequence of partial sums $(\sum_{k=0}^{n} a_k)_{n\geq 0}$ is the coefficient sequence of an algebraic power series.