Exercises discussed on November 20, 2012

27. Show that the sequence of Harmonic numbers $\left(H_{n}\right)_{n \geq 0}$ is not C-finite.
28. Use the package GeneratingFunctions ${ }^{1}$ to

- guess a recurrence for the sequence $\left(F_{3 n}\right)_{n \geq 0}$ (you can use the Mathematica built-in function Fibonacci[n] to generate the data);
- guess a recurrence for the sequence $\left(L_{2 n}\right)_{n \geq 0}$ (you can use the Mathematica built-in function LucasL[n] to generate the data);
- compute the recurrences for $a_{n}=F_{3 n}+L_{2 n}$ and $b_{n}=F_{3 n} L_{2 n}$ using closure properties.

29. Determine the hypergeometric function representation of
(a) $\frac{1}{x} \log (1+x)=\sum_{n \geq 0} \frac{(-1)^{n}}{n+1} x^{n}$
(b) $\cos (x)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$
30. Show that in $\mathbb{Q} \llbracket x \rrbracket$ the hypergeometric function $y(x)={ }_{2} F_{1}\left(\begin{array}{cc}a & b \\ c & ; x\end{array}\right)$ satisfies the differential equation:

$$
x(1-x) y^{\prime \prime}(x)+(c-(a+b+1) x) y^{\prime}(x)-a b y(x)=0 .
$$

[^0]
[^0]: ${ }^{1}$ available at http://www.risc.jku.at/research/combinat/software

