Exercises discussed on November 20, 2012

- 27. Show that the sequence of Harmonic numbers $(H_n)_{n>0}$ is not C-finite.
- 28. Use the package GeneratingFunctions¹ to
 - guess a recurrence for the sequence $(F_{3n})_{n\geq 0}$ (you can use the Mathematica built-in function Fibonacci[n] to generate the data);
 - guess a recurrence for the sequence $(L_{2n})_{n\geq 0}$ (you can use the Mathematica built-in function LucasL[n] to generate the data);
 - compute the recurrences for $a_n = F_{3n} + L_{2n}$ and $b_n = F_{3n}L_{2n}$ using closure properties.
- 29. Determine the hypergeometric function representation of

(a)
$$\frac{1}{x}\log(1+x) = \sum_{n\geq 0} \frac{(-1)^n}{n+1} x^n$$

(b) $\cos(x) = \sum_{n\geq 0} \frac{(-1)^n}{(2n)!} x^{2n}$

30. Show that in $\mathbb{Q}[\![x]\!]$ the hypergeometric function $y(x) = {}_2F_1\begin{pmatrix} a & b \\ c & ; x \end{pmatrix}$ satisfies the differential equation:

$$x(1-x)y''(x) + (c - (a+b+1)x)y'(x) - aby(x) = 0.$$

¹available at http://www.risc.jku.at/research/combinat/software