Exercises discussed on November 13, 2012

23. (Tower of Hanoi) Given a tower of n disks initially stacked in increasing order on one of three pegs, the task is to transfer the entire tower to one of the other pegs, moving only one disk at a time and never moving a larger disk onto a smaller one. Let a_{n} denote the minimal number of moves needed.
Find a recurrence for a_{n}. Compute the first few values and guess a closed form solution. Derive the closed form solution using techniques from the lecture.
24. Given n people numbered from 1 to n sitting at a round table. Starting from person 1 in clockwise order every second person leaves until only one person remains (the first person to leave is person 2). Let $J(n)$ denote the number of the remaining person. Determine $J(n)$.
25. Prove Theorem 3.2 for recurrences of order two, i.e., for $c_{0} \neq 0, c_{1} \in \mathbb{K}$ with

$$
x^{2}+c_{1} x+c_{0}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)
$$

with $\alpha_{1} \neq \alpha_{2} \in \mathbb{K}$, show that $\left(\alpha_{1}^{n}\right)_{n \geq 0},\left(\alpha_{2}^{n}\right)_{n \geq 0}$ form a basis for the solutions of the recurrence

$$
a_{n+2}+c_{1} a_{n+1}+c_{0} a_{n}=0, \quad n \geq 0
$$

and that if $\alpha_{1}=\alpha_{2}=\alpha$ then $\left(\alpha^{n}\right)_{n \geq 0},\left(n \alpha^{n}\right)_{n \geq 0}$ form a basis for the solutions of the above recurrence.
26. (Theorem 3.3) Show that a sequence $\left(a_{n}\right)_{n \geq 0}$ in \mathbb{K} satisfies a C-finite recurrence

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0, \quad n \geq 0
$$

with $c_{i} \in \mathbb{K}, c_{0} \neq 0$, if and only if

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{p(x)}{1+c_{r-1} x+\cdots+c_{0} x^{r}}
$$

for some polynomial $p(x)$ with degree at most $r-1$.

