Exercises discussed on October 30, 2012

15. Show the exponential law for formal power series:

$$
\exp (a x) \exp (b x)=\exp ((a+b) x), \quad a, b \in \mathbb{K}
$$

16. Let $\left(a_{n}(x)\right)_{n \geq 0},\left(b_{n}(x)\right)_{n \geq 0}$ be convergent sequences of formal power series with respective limits $a(x), b(x) \in \mathbb{K} \llbracket x \rrbracket$.
Show that then also $\left(c_{n}(x)\right)_{n \geq 0}$ with $c_{n}(x)=a_{n}(x)+b_{n}(x)$ is a convergent sequence of formal power series with limit $a(x)+b(x)$.
17. Prove the reflection formula, i.e., show that for x an indeterminate and $k \in \mathbb{N}$:

$$
\binom{x}{k}=(-1)^{k}\binom{k-x-1}{k}
$$

18. Give a direct proof of the binomial theorem in the ring of formal power series, i.e., show that for $f(x) \in \mathbb{C} \llbracket x \rrbracket$ with $f(0)=0$ and $\lambda \in \mathbb{C}$ that

$$
(1+f(x))^{\lambda}:=\sum_{n \geq 0}\binom{\lambda}{n} f(x)^{n} \in \mathbb{C} \llbracket x \rrbracket .
$$

