Exercises discussed on October 23, 2012

11. Show that the map $D_{x}: \mathbb{K} \llbracket x \rrbracket \rightarrow \mathbb{K} \llbracket x \rrbracket$ defined as

$$
D_{x} \sum_{n=0}^{\infty} a_{n} x^{n}:=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

turns $\mathbb{K} \llbracket x \rrbracket$ into a differential ring.
12. Show that for the formal derivation and integration as defined in the lecture and for all $a(x) \in \mathbb{K} \llbracket x \rrbracket$ it holds that
(a) $D_{x} \int_{x} a(x)=a(x)$ (fundamental theorem of calculus I)
(b) $\int_{x} D_{x} a(x)=a(x)-a(0)$ (fundamental theorem of calculus II)
(c) $\left\langle x^{n}\right\rangle a(x)=\left.\frac{1}{n!}\left(D_{x}^{n} a(x)\right)\right|_{x=0}$ (Taylor's formula)
13. Prove Theorem 2.10 (Multiplicative Inverse):

Let $a(x) \in \mathbb{K} \llbracket x \rrbracket$. Then there exists a series $b(x) \in \mathbb{K} \llbracket x \rrbracket$ with $a(x) b(x)=1$ if and only if $a(0) \neq 0$.
14. Define the formal power series $\sum_{n \geq 0} b_{n} x^{n}=\left(\sum_{n=0} n!x^{n}\right)^{-1}$.
(a) Verify that the coefficients $b_{7}, b_{8}, b_{9}, b_{10}$ are negative.
(b) Check what the online encyclopedia of integer sequences (Sloane's database) says about the sequence of coefficients $-b_{1},-b_{2},-b_{3},-b_{4}, \ldots$

