Exercises discussed on October 16, 2012

6. Let

$$
g(n)=\sum_{k=0}^{n-1} \frac{2 k}{(k+1)(k+2)} .
$$

Show that

$$
g(n)=2 H_{n}+\frac{4}{n+1}-4
$$

(a) by hand.
(b) using a computer algebra system.
7. Show that $H_{n} \sim \log n$ as n tends to infinity without using Euler's result.
(BP1) Show that the harmonic numbers cannot be expressed as a rational function, i.e., show that $H_{n} \notin \mathbb{C}(n)$.
8. Determine the generating function $F(x)=\sum_{n \geq 0} c_{n} x^{n}$ for
(a) $c_{n}=n^{2}$.
(b) $c_{n}=\frac{1}{n+1}$.
9. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \cdot\right)$ is a commutative ring with one.
10. Show that $(\mathbb{K} \llbracket x \rrbracket,+, \cdot)$ is an integral domain.
(BP) indicates Bonus problem, i.e., it brings extra credits.

