Exercises discussed on January 24, 2012

54. Execute the algorithm HYPER step by step (with assistance of a computer algebra system) to determine all hypergeomtric solutions of the recurrence

$$
3(3 n+5) y(n)-\left(9 n^{2}+27 n+17\right) y(n+1)+(n+2)(3 n+2) y(n+2)=0
$$

55. Execute Zeilberger's algorithm step by step (with assistance of a computer algebra system) to determine the hypergeometric closed form of

$$
s(n)=\sum_{k=0}^{n} \frac{2^{k}}{k!(n-k)!} .
$$

56. Use the program Hyper.m to determine the solutions of the following recurrences:
$2\left(3 n^{2}+7 n+6\right) a_{n}+(n+2)\left(3 n^{2}+n+2\right) a_{n+2}-\left(3 n^{3}+16 n^{2}+15 n+10\right) a_{n+1}=0$, with $a_{0}=0, a_{1}=-2$;

$$
\begin{aligned}
0= & \left(9 n^{2}+25 n+17\right) b_{n}-(n+1)\left(81 n^{4}+324 n^{3}+437 n^{2}+226 n+37\right) b_{n+1} \\
& +(n+1)(n+2)(2 n+3)(3 n+4)(3 n+5)\left(9 n^{2}+7 n+1\right) b_{n+2},
\end{aligned}
$$

with $b_{0}=-1, b_{1}=-2$;

$$
\begin{aligned}
0= & (n-1) n^{2} c_{n+3}-(n-1)\left(n^{3}+6 n^{2}+4 n+1\right) c_{n+2} \\
& +\left(3 n^{3}+6 n^{2}-3 n-2\right)(n+1) c_{n+1}-2 n(n+1)^{3} c_{n}
\end{aligned}
$$

with $c_{0}=0, c_{1}=1, c_{2}=2$.
57. Use the program zb.m to determine recurrences for the following sums:
(a) $s(n)=\sum_{k=0}^{n}\binom{\lambda}{k}\binom{\mu}{n-k}$ for λ, μ formal parameters.
(b) $s(n)=\sum_{k=0}^{n}\binom{n+k}{2 k}(-4)^{-k}$.
(c) $s(n)=\sum_{k=0}^{n}\binom{n+2 k}{2 k}\binom{2 k}{k} \frac{(-1)^{k}}{k+1}$.
(d) $s(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$.

Where possible, determine closed form solutions (e.g., using Hyper).

