
Exercises discussed on January 24, 2012

54. Execute the algorithm HYPER step by step (with assistance of a computer algebra
system) to determine all hypergeomtric solutions of the recurrence

3(3n+ 5)y(n)− (9n2 + 27n+ 17)y(n+ 1) + (n+ 2)(3n+ 2)y(n+ 2) = 0.

55. Execute Zeilberger’s algorithm step by step (with assistance of a computer algebra
system) to determine the hypergeometric closed form of

s(n) =
n∑
k=0

2k

k!(n− k)!
.

56. Use the program Hyper.m to determine the solutions of the following recurrences:
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with a0 = 0, a1 = −2;
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with b0 = −1, b1 = −2;
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with c0 = 0, c1 = 1, c2 = 2.

57. Use the program zb.m to determine recurrences for the following sums:
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)
for λ, µ formal parameters.
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.

Where possible, determine closed form solutions (e.g., using Hyper).


