Exercises discussed on January 17, 2012

49. Compute a hypergeometric closed form of the sum $s_{n}=\sum_{k=0}^{n} \frac{4}{(2 k-1)(2 k+1)}$ using the Guess and Prove strategy.
50. Compute a hypergeometric closed form of the sum $s_{n}=\sum_{k=0}^{n} \frac{4}{(2 k-1)(2 k+1)}$ by applying Gosper's algorithm.
51. Show that harmonic numbers do not admit a closed form as hypergeometric term plus constant using Gosper's algorithm.
52. Use the implementation of Gosper's algorithm in the package zb.m avalaible at
http://www.risc.jku.at/research/combinat/software/PauleSchorn/index.php to determine a closed form of the following sums, if they exist:
(a) $s_{n}=\sum_{k=0}^{n}(k-1) k!2^{-k}$
(b) $s_{n}=\sum_{k=0}^{n}(k+1)^{2} k$!
(c) $s_{n}(a)=\sum_{k=0}^{n} a^{k}$
(d) $s_{n}(a)=\sum_{k=0}^{n}\binom{a}{k}$
(e) $s_{n}=\sum_{k=0}^{n} \frac{4 k-1}{(2 k-1)^{2}}\binom{2 k}{k}^{2} 4^{-2 k}$
(f) $s_{n}=\sum_{k=0}^{n} \frac{4 k-1}{2 k-1}\binom{2 k}{k} 4^{-2 k}$
53. Given polynomials $u(x), v(x), t(x)$ determine a degree bound for the polynomial solution $y(x)$ of the Gosper equation

$$
u(x) y(x+1)-v(x) y(x)=t(x)
$$

analogously to the discussion of the algorithm POLY (see also "A=B"), i.e., distinguish the three cases:
$-\operatorname{deg} u(x) \neq \operatorname{deg} v(x)$ OR $\operatorname{lc} u(x) \neq \operatorname{lc} v(x)$
$-\operatorname{deg} u(x)=\operatorname{deg} v(x)$ AND $\operatorname{lc} u(x)=\operatorname{lc} v(x)$ and either the terms of second highest degree cancel, or they do not cancel.

