Exercises discussed on December 13, 2011

41. Let $a(x)=\sum_{n \geq 0} a_{n} x^{n} \in \mathbb{K} \llbracket x \rrbracket$. Show that if $\left(a_{n}\right)_{n \geq 0}$ is holonomic of order r and degree d, then $a(x)$ is holonomic of order at most d and degree at most $r+d$.
42. Show that if $\left(a_{n}\right)_{n \geq 0}$ is holonomic, then $s_{n}=\sum_{k=0}^{n} a_{k}$ is holonomic.
43. Use Mallinger's package GeneratingFunctions to
(a) compute the defining differential equation for $y(x)=\frac{x}{\sqrt{1-4 x}}$ starting from the algebraic equation

$$
(1-4 x) y(x)^{2}-x^{2}=0 ;
$$

(b) derive a recurrence relation for the coefficients a_{n} of $y(x)=\sum_{n \geq 0} a_{n} x^{n}$ starting from the differential equation computed in (a).

Solve the recurrence computed in (b) using your favourite computer algebra system.
44. Prove Euler's transform: For $y \in \mathbb{C} \llbracket x \rrbracket$:

$$
\left\langle x^{n}\right\rangle \frac{1}{1-x} y\left(\frac{x}{x-1}\right)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left\langle x^{k}\right\rangle y(x) .
$$

