Exercises discussed on December 6, 2011

36. Can $f(x)=\sin (x)+\cos (x)$ be expressed as a hypergeometric series?
37. Show that a sequence $\left(a_{n}\right)_{n>0}$ is holonomic if and only if there exist polynomials $p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ and $q \in \mathbb{K}[x]$ such that

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=q(n), \quad n \in \mathbb{N} .
$$

38. Implement a procedure in your favourite computer algebra system that given polynomials $a_{0}(n), a_{1}(n), a_{2}(n), c(n)$ returns the degree bound D of Algorithm POLY, i.e., the degree bound for potential polynomial solutions $y(n)$ of

$$
a_{0}(n) y(n)+a_{1}(n) y(n+1)+a_{2}(n) y(n+2)=c(n) .
$$

39. Determine all polynomial solutions of the recurrence

$$
(n+1) a(n)-(2 n+3) a(n+1)+(n+2) a(n+2)=0 .
$$

40. Determine all polynomial solutions of the recurrence

$$
(4 n+9) a(n)-4(n+1) a(n+1)+3 a(n+2)=0, \quad a(0)=-1, \quad a(1)=0
$$

