Exercises discussed on November 29, 2011

31. Determine all sequences that are at the same time C-finite and hypergeometric.
32. Determine the asymptotics of

$$
\frac{3^{n}}{4 n+1}\binom{3 n}{n+1}^{2}\binom{6 n}{2 n}^{-1}
$$

33. Determine the hypergeometric function representation of
(a) $\frac{1}{x} \log (1+x)=\sum_{n \geq 0} \frac{(-1)^{n}}{n+1} x^{n}$
(b) $\cos (x)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$
34. Show that in $\mathbb{Q} \llbracket x \rrbracket$ the hypergeometric function $y(x)={ }_{2} F_{1}\left(\begin{array}{cc}a & b \\ c & ; x)\end{array}\right)$ satisfies the differential equation:

$$
x(1-x) y^{\prime \prime}(x)+(c-(a+b+1) x) y^{\prime}(x)-a b y(x)=0 .
$$

35. Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$ have the hypergeometric series representation

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{2} F_{1}\left(\begin{array}{cc}
-n & n+\alpha+\beta+1 \\
\alpha+1 & \left.\frac{1-x}{2}\right) .
\end{array}\right.
$$

Show that the derivative of Jacobi polynomials is again a Jacobi polynomial with shifted parameters, i.e., show that

$$
\frac{d}{d x} P_{n}^{(\alpha, \beta)}(x)=\frac{n+\alpha+\beta+1}{2} P_{n-1}^{(\alpha+1, \beta+1)}(x) .
$$

Chebyshev polynomials of the first kind $T_{n}(x)$ are special instances of Jacobi polynomials. Which parameters α, β do they correspond to?

