
Exercises discussed on November 29, 2011

31. Determine all sequences that are at the same time C-finite and hypergeometric.

32. Determine the asymptotics of
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33. Determine the hypergeometric function representation of
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34. Show that in Q[[x]] the hypergeometric function y(x) = 2F1
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differential equation:

x(1 − x)y′′(x) + (c− (a+ b+ 1)x)y′(x) − aby(x) = 0.

35. Jacobi polynomials P
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n (x) have the hypergeometric series representation
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Show that the derivative of Jacobi polynomials is again a Jacobi polynomial with
shifted parameters, i.e., show that

d

dx
P (α,β)
n (x) =

n+ α + β + 1

2
P

(α+1,β+1)
n−1 (x).

Chebyshev polynomials of the first kind Tn(x) are special instances of Jacobi poly-
nomials. Which parameters α, β do they correspond to?


