Exercises discussed on November 22, 2011

27. Prove Theorem 3.2 for recurrences of order two., i.e., for $c_{0} \neq 0, c_{1} \in \mathbb{K}$ with

$$
x^{2}+c_{1} x+c_{0}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)
$$

with $\alpha_{1} \neq \alpha_{2} \in \mathbb{K}$, show that $\left(\alpha_{1}^{n}\right)_{n \geq 0},\left(\alpha_{2}^{n}\right)_{n \geq 0}$ form a basis of the solutions of the recurrence

$$
a_{n+2}+c_{1} a_{n+1}+c_{0} a_{n}=0,
$$

and that if $\alpha_{1}=\alpha_{2}$ then $\left(\alpha_{1}^{n}\right)_{n \geq 0},\left(n \alpha_{1}^{n}\right)_{n \geq 0}$ form a basis of solutions of the above recurrence.
(BP2) Prove Theorem 3.2 for the general case.
28. (Theorem 3.3) Show thata sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies a C-finite recurrence

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0, \quad n \geq 0
$$

with $c_{i} \in \mathbb{K}, c_{0} \neq 0$ if and only if

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{p(x)}{1+c_{r-1} x+\cdots+c_{1} x^{r-1}+c_{0} x^{r}}
$$

for some $p \in \mathbb{K}[x]$ with $\operatorname{deg} p(x) \leq r-1$.
29. Use the GeneratingFunctions ${ }^{1}$ package to

- guess a recurrence for the sequence $\left(F_{2 n}\right)_{n \geq 0}$ (you can use the Mathematica built-in function Fibonacci[n] to generate the data);
- guess a recurrence for the Lucas numbers $\left(L_{n}\right)_{n \geq 0}$ (you can use the Mathematica built-in function LucasL[n] to generate the data);
- compute the recurrences for $a_{n}=F_{2 n}+L_{n}$ and $b_{n}=F_{2 n} L_{n}$ using closure properties.

30. Show that the sequence of Harmonic numbers $\left(H_{n}\right)_{n \geq 0}$ is not C-finite.
[^0]
[^0]: ${ }^{1}$ available at http://www.risc.jku.at/research/combinat/software/

