Exercises discussed on November 15, 2011

22. Let the signless Stirling numbers of the first kind $C(n, k)$ denote the number of permutations of $\{1,2, \ldots, n\}$ with exactly k cycles. Derive a recurrence relation for $C(n, k)$ and starting from this recurrence, derive a recurrence relation for the Stirling numbers of the first kind $S_{1}(n, k):=(-1)^{n-k} C(n, k)$.
23. Let x be an indeterminate and $n \in \mathbb{N}$. Show that
(a) $x^{n}=\sum_{k=0}^{n} S_{2}(n, k) x^{\underline{k}}$
(b) $x^{\underline{n}}=\sum_{k=0}^{n} S_{1}(n, k) x^{k}$
24. (Tower of Hanoi) Given a tower of n disks initially stacked in increasing order on one of three pegs, the task is to transfer the entire tower to one of the other pegs, moving only one disk at a time and never moving a larger disk onto a smaller one. Let a_{n} denote the minimal number of moves needed.
Find a recurrence for a_{n}. Compute the first few values and guess a closed form solution. Derive the closed form solution using techniques from the lecture.
25. Given n people numbered from 1 to n sitting at a round table. Starting from person 1 in clockwise order every second person leaves until only one person remains (the first person to leave is person 2). Let $J(n)$ denote the number of the remaining person. Determine $J(n)$.
26. Let the sequence $(f(n))_{n \geq 0}$ be recursively defined by

$$
f(n+3)+2 f(n+2)-f(n+1)-2 f(n)=0, \quad f(0)=1, f(1)=-1, f(2)=2 .
$$

What is the companion matrix of this recurrence? Determine the solution of the recurrence.

