Exercises discussed on November 8, 2011

17. Let $\left(a_{n}(x)\right)_{n \geq 0},\left(b_{n}(x)\right)_{n \geq 0}$ be convergent sequences of formal power series with respective limits $a(x), b(x) \in \mathbb{K} \llbracket x \rrbracket$.
Show that then also $\left(c_{n}(x)\right)_{n \geq 0}$ with $c_{n}(x)=a_{n}(x)+b_{n}(x)$ is a convergent sequence of formal power series with limit $a(x)+b(x)$.
18. Prove the reflection formula, i.e., show that for x an indeterminate and $k \in \mathbb{N}$:

$$
\binom{x}{k}=(-1)^{k}\binom{k-x-1}{k}
$$

19. Give a direct proof of the binomial theorem in the ring of formal power series, i.e., show that for $f(x) \in \mathbb{C} \llbracket x \rrbracket$ with $f(0)=0$ and $\lambda \in \mathbb{C}$ that

$$
(1+f(x))^{\lambda}:=\sum_{n \geq 0}\binom{\lambda}{n} f(x)^{n} \in \mathbb{C} \llbracket x \rrbracket .
$$

Recall the definition of Stirling numbers of the second kind $S_{2}(n, k)$ as the number of ways to partition an n-element set into a disjoint union of k nonempty subsets. They satisfy the recurrence relation

$$
S_{2}(n, k)=S_{2}(n-1, k-1)+k S_{2}(n-1, k), \quad n, k \geq 1,
$$

with initial values $S_{2}(0,0)=0$ and $S_{2}(n, 0)=S_{2}(0, n)=0$ for $n \geq 1$.
20. Show that for $k \in \mathbb{N}$

$$
\sum_{n=0}^{\infty} S_{2}(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)} .
$$

21. Show that for $k \in \mathbb{N}$

$$
\sum_{n=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(\mathrm{e}^{x}-1\right)^{k}
$$

and that

$$
\sum_{n, k=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!} y^{k}=\exp \left(y\left(\mathrm{e}^{x}-1\right)\right)
$$

