Exercises discussed on October 25, 2011

12. Show the exponential law for formal power series,

$$\exp(ax)\exp(bx) = \exp((a+b)x), \qquad a, b \in \mathbb{K}.$$

- 13. Show that for the formal derivation and integration as defined in the lecture for all $a(x) \in \mathbb{K}[x]$ it holds that
 - (a) $D_x \int_x a(x) = a(x)$ (fundamental theorem of calculus I)
 - (b) $\int_x D_x a(x) = a(x) a(0)$ (fundamental theorem of calculus II)
 - (c) $\langle x^n \rangle a(x) = \frac{1}{n!} \left(D_x^n a(x) \right) \Big|_{x=0}$ (Taylor's formula)
- 14. Prove Theorem 2.9: Let $a(x) \in \mathbb{K}[x]$. Then there exists a series $b(x) \in \mathbb{K}[x]$ with a(x)b(x) = 1 if and only if $a(0) \neq 0$.
- 15. Define the formal power series $\sum_{n\geq 0} b_n x^n = \left(\sum_{n\geq 0} n! x^n\right)^{-1}$.
 - (a) Verify that the coefficients b_8, b_9, b_{10} are negative.
 - (b) Check what the online encyclopedia of integer sequences (OEIS) says about the sequence of coefficients $-b_1, -b_2, -b_3, \ldots$
- 16. Compute the first 10 coefficients in the series expansion of $a(x) = \frac{1}{1-x-x^2}$ using inversion of the formal power series $b(x) = 1 x x^2$. Check what the OEIS says about this sequence.