Exercises discussed on October 25, 2011

12. Show the exponential law for formal power series,

$$
\exp (a x) \exp (b x)=\exp ((a+b) x), \quad a, b \in \mathbb{K} .
$$

13. Show that for the formal derivation and integration as defined in the lecture for all $a(x) \in \mathbb{K} \llbracket x \rrbracket$ it holds that
(a) $D_{x} \int_{x} a(x)=a(x)$ (fundamental theorem of calculus I)
(b) $\int_{x} D_{x} a(x)=a(x)-a(0)$ (fundamental theorem of calculus II)
(c) $\left\langle x^{n}\right\rangle a(x)=\left.\frac{1}{n!}\left(D_{x}^{n} a(x)\right)\right|_{x=0}$ (Taylor's formula)
14. Prove Theorem 2.9: Let $a(x) \in \mathbb{K} \llbracket x \rrbracket$. Then there exists a series $b(x) \in \mathbb{K} \llbracket x \rrbracket$ with $a(x) b(x)=1$ if and only if $a(0) \neq 0$.
15. Define the formal power series $\sum_{n \geq 0} b_{n} x^{n}=\left(\sum_{n \geq 0} n!x^{n}\right)^{-1}$.
(a) Verify that the coefficients b_{8}, b_{9}, b_{10} are negative.
(b) Check what the online encyclopedia of integer sequences (OEIS) says about the sequence of coefficients $-b_{1},-b_{2},-b_{3}, \ldots$
16. Compute the first 10 coefficients in the series expansion of $a(x)=\frac{1}{1-x-x^{2}}$ using inversion of the formal power series $b(x)=1-x-x^{2}$. Check what the OEIS says about this sequence.
