Exercises discussed on October 18, 2011

- 7. Show that $H_n \sim \log n$ as n tends to infinity.
- (BP1) Show that the harmonic numbers cannot be expressed as a rational function, i.e., show that $H_n \notin \mathbb{C}(n)$.
 - 8. Determine the generating function of
 - (a) $a_n = n^2$.
 - (b) $a_n = \frac{1}{n+1}$.
 - 9. Show that $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ is a commutative ring with one.
 - 10. Show that $(\mathbb{K}[x], +, \cdot)$ is an integral domain.
 - 11. Show that the map $D_x : \mathbb{K}[\![x]\!] \to \mathbb{K}[\![x]\!]$ defined as

$$D_x \sum_{n=0}^{\infty} a_n x^n := \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n,$$

turns $\mathbb{K}[x]$ into a differential ring.

BP means bonus problem (i.e., not mandatory)