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Preliminaries



First-order algebraic ordinary differential equation

Throughout the slides:
ℱ is an algebraically closed field of characteristic zero, 𝑥 is an
indeterminate, and we consider the derivation ′ = d/d𝑥.

Definition
An algebraic ordinary differential equation (AODE) of order
one is an ODE of the form

𝐴(𝑥, 𝑦, 𝑦′) = 0,

where 𝐴 ∈ ℱ[𝑥, 𝑢, 𝑣] such that deg𝑣(𝐴) > 0. We call 𝐴 the
defining polynomial of the AODE.

Henceforth, we assume that 𝐴 is irreducible.
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Rational general solution

Differential algebra recap:
Denote by ℱ(𝑥){𝑦} the differential polynomial ring over the
differential field (ℱ(𝑥),′ ). Let 𝑃 ∈ ℱ(𝑥){𝑦} be an irreducible
differential polynomial of order one.

Ritt [Rit50] showed that the radical differential ideal generated
by 𝑃 can be decomposed into

{𝑃} = ({𝑃} ∶ 𝑆𝑃) ∩ {𝑃, 𝑆𝑃},

where 𝑆𝑃 = 𝜕𝑃/𝜕𝑦′ denotes the separant of 𝑃. The component
{𝑃} ∶ 𝑆𝑃 is an essential prime divisor of this decomposition,
whereas {𝑃, 𝑆𝑃} may have to be further decomposed.
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In the literature, the prime different ideal {𝑃} ∶ 𝑆𝑃 is called the
general component of 𝑃. We consider the left-hand side of a
first-order AODE as a differential polynomial.

Definition
A general solution of a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 is a
generic zero of the general component of 𝐴(𝑥, 𝑦, 𝑦′).

Definition
A general solution ̂𝑦 of the first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 is
called a rational general solution if ̂𝑦 ∈ 𝔽(𝑥), where 𝔽 ⊋ ℱ
is a constant differential extension field.

The typical case in this presentation is 𝔽 = ℱ(𝐶), where 𝐶 is an
arbitrary constant.
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Proper rational parametrization

Let 𝒱 ⊆ 𝔸𝑛(ℱ) be a 𝑑-dimensional affine algebraic variety, i.e. an
irreducible affine algebraic set.

Definition
A proper rational parametrization of 𝒱 is a birational map

Φ𝒱 ∶ 𝔸𝑑(ℱ) → 𝒱,

𝐭 ↦ (Φ1(𝐭),… ,Φ𝑛(𝐭)) ,

where Φ𝑖 ∈ ℱ(𝐭) = ℱ(𝑡1,… , 𝑡𝑑) for all 1 ≤ 𝑖 ≤ 𝑛.

Varieties which possess a proper rational parametrization are
called rational or a rational variety. In the sequel, proper
rational parametrizations are denoted by a tuple of rational
functions Φ𝒱 = (Φ1,… ,Φ𝑛).
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Solution algorithms



Algorithms for parametrizable first-order AODEs

We shall (briefly) discuss the following algorithms for computing
rational general solutions (RGSs) of first-order AODEs:

1. [NW10]: Computation of RGSs of first-order AODEs via
surface-parametrization.

2. [VGW18]: Computation of (strong) RGSs of first-order AODEs
via curve-parametrization.

3. [FG04]: Computation of RGSs of first-order autonomous
AODEs.

Remark: All these methods derive a RGS from a suitable rational
reparametrization of a proper rational parametrization of an
associated affine algebraic variety.
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Surface-parametrizable first-order AODEs

Consider the first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 with defining
polynomial 𝐴 ∈ ℱ[𝑥, 𝑢, 𝑣].1 The zero-locus of 𝐴 defines the
surface

𝒮𝐴 ≔ {(𝑎0, 𝑎1, 𝑎2) ∈ 𝔸3(ℱ) | 𝐴(𝑎0, 𝑎1, 𝑎2) = 0}.

Definition
We call 𝒮𝐴 the associated surface (of the AODE). If 𝒮𝐴 has a
proper rational parametrization 𝝋𝒮𝐴 = (𝜑0, 𝜑1, 𝜑2) with
𝜑0, 𝜑1, 𝜑2 ∈ ℱ(𝑡1, 𝑡2), then the AODE is called
surface-parametrizable.

1Recall that 𝐴 is irreducible and of positive degree in 𝑣.
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Let 𝐴(𝑥, 𝑦, 𝑦′) = 0 be surface-parametrizable, 𝝋𝒮𝐴 = (𝜑0, 𝜑1, 𝜑2) a
proper rational parametrization, and assume ̂𝑦 is a rational
(general) solution. Such a solution generates a parametric
(family of) rational curve(s) 𝒞 ̂𝑦(𝑥) = (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)) on 𝒮𝐴.

Let (𝜎(𝑥), 𝜏(𝑥)) = 𝝋−1𝒮𝐴(𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)). Application of 𝝋𝒮𝐴 on both
sides yields 𝝋𝒮𝐴(𝜎(𝑥), 𝜏(𝑥)) = (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)) which gives the
following conditions for 𝜎(𝑥) and 𝜏(𝑥):

{
𝜑0(𝜎(𝑥), 𝜏(𝑥)) = 𝑥

𝜑2(𝜎(𝑥), 𝜏(𝑥)) =
d
d𝑥𝜑1(𝜎(𝑥), 𝜏(𝑥)).

This system can be solved for 𝜎(𝑥) and 𝜏(𝑥).
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Definition
Let 𝝋𝒮𝐴 = (𝜑0, 𝜑1, 𝜑2), where 𝜑0, 𝜑1, 𝜑2 ∈ ℱ(𝑡1, 𝑡2), be a proper
rational parametrization of the surface-parametrizable
first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0.

The system

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜎′ =
𝜑2(𝜎, 𝜏)

𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

− 𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

− 𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

𝜏′ =
𝜑2(𝜎, 𝜏)

𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

− 𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

− 𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

is called the associated planar system wrt. 𝝋𝒮𝐴 .
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Question: What is a suitable rational reparametrization of 𝝋𝒮𝐴?

Answer: A rational general solution (�̂�(𝑥), ̂𝜏(𝑥)) of the associated
planar system wrt. 𝝋𝒮𝐴 .

In this case, ̂𝑦 = 𝜑1(�̂�(𝑥 + 𝐾), ̂𝜏(𝑥 + 𝐾)) is a rational general
solution of the original AODE, where 𝐾 = 𝑥 − 𝜑0(�̂�(𝑥), ̂𝜏(𝑥)) is a
constant. Thus, surface-parametrizable first-order AODEs can be
transformed into autonomous planar rational systems. This
transformation preserves rational general solutions.

Theorem ([NW11a])
The rational general solutions of a surface-parametrizable
first-order AODE are in one-to-one correspondence with the
rational general solutions of its associated planar system.
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Algorithm 1: RGS surface-param. first-order AODE [NW10]
Input : First-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0
Output :Rational general solution ̂𝑦 or string message

1 if the associated surface 𝒮𝐴 is rational then
2 Compute a proper rational parametrization

𝝋𝒮𝐴 = (𝜑0, 𝜑1, 𝜑2), where 𝜑0, 𝜑1, 𝜑2 ∈ ℱ(𝑡1, 𝑡2).

3 Find a rational general solution (�̂�(𝑥), ̂𝜏(𝑥)) of

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜍′ =
𝜑2(𝜍, 𝜏)

𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

− 𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

− 𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

𝜏′ =
𝜑2(𝜍, 𝜏)

𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

− 𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

𝜕𝜑0(𝜍,𝜏)
𝜕𝜍

𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

− 𝜕𝜑0(𝜍,𝜏)
𝜕𝜏

𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

.

4 if no such solution exists then
5 return “AODE has no rational general solution”
6 else
7 return ̂𝑦 = 𝜑1(�̂�(𝑥 + 𝐾), ̂𝜏(𝑥 + 𝐾)), where 𝐾 = 𝑥 − 𝜑0(�̂�(𝑥), ̂𝜏(𝑥))
8 else
9 return “AODE is not surface-parametrizable” 11



Example

Consider the first-order AODE 𝑥3𝑦′ − 𝑦2 − 𝑥2𝑦 = 0 and let ℱ = ℚ.
The associated surface

𝒮𝐴 = {(𝑎0, 𝑎1, 𝑎2) ∈ 𝔸3(ℚ) | 𝑎30 𝑎2 − 𝑎21 − 𝑎20 𝑎1 = 0}

can be parametrized by

𝝋𝒮𝐴 = (𝜑0 = 𝑡1, 𝜑1 = 𝑡2, 𝜑2 =
𝑡22 + 𝑡2𝑡21

𝑡31
).

The associated planar system wrt. 𝝋𝒮𝐴 is

{
𝜎′ = 1

𝜏′ = 𝜏2+𝜏𝜍2

𝜍3
,

with the solution (�̂�(𝑥) = 𝑥, ̂𝜏(𝑥) = 𝑥2/(𝐶𝑥 + 1)). This yields the
rational general solution ̂𝑦 = 𝜑1(�̂�(𝑥 + 𝐾), ̂𝜏(𝑥 + 𝐾)) = 𝑥2/(𝐶𝑥 + 1),
where 𝐾 = 𝑥 − 𝜑0(�̂�(𝑥), ̂𝜏(𝑥)) = 0.
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Curve-parametrizable first-order AODEs

Consider a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 and view its defining
polynomial 𝐴 ∈ ℱ(𝑥)[𝑢, 𝑣]. The zero-locus of 𝐴 defines the curve

𝒞𝐴 ≔ {(𝑎1, 𝑎2) ∈ 𝔸2(ℱ(𝑥)) | 𝐴(𝑎1, 𝑎2) = 0}.

Note: The polynomial 𝐴 remains irreducible in ℱ(𝑥)[𝑢, 𝑣], but
might factor over ℱ(𝑥).

Definition
We call 𝒞𝐴 the associated curve (of the AODE). If 𝒞𝐴 has a
proper rational parametrization 𝝍𝒞𝐴 = (𝜓1, 𝜓2) such that
𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡), then the AODE is called
curve-parametrizable.
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Note: The coefficients of the parametrization in the previous
definition must be chosen from ℱ(𝑥) (not from ℱ(𝑥)).

Let 𝝍𝒞𝐴 = (𝜓1, 𝜓2) with 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡) be a proper rational
parametrization of the curve-parametrizable AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0
and let ̂𝑦 be a rational (general) solution. In this case, ( ̂𝑦, ̂𝑦′)
defines a (family of) point(s) on the associated curve 𝒞𝐴.

Let 𝜔 = 𝝍−1𝒞𝐴( ̂𝑦, ̂𝑦′), then 𝝍𝒞𝐴(𝜔) = ( ̂𝑦, ̂𝑦′) and we obtain that

d
d𝑥𝜓1(𝜔) = 𝜓2(𝜔).

A solution for 𝜔 solves a quasi-linear equation.
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Definition
Let 𝝍𝒞𝐴 = (𝜓1, 𝜓2), where 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡), be a proper
rational parametrization of the curve-parametrizable
first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0.

We call the quasi-linear ODE

𝜔′ =
𝜓2(𝜔) −

𝜕𝜓1(𝜔)
𝜕𝑥

𝜕𝜓1(𝜔)
𝜕𝜔

the associated quasi-linear equation wrt. 𝝍𝒞𝐴 .
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Question: What is a suitable rational reparametrization of 𝝍𝒞𝐴?

Answer: A rational general solution �̂� of the associated
quasi-linear equation.

In this case, ̂𝑦 = 𝜓1(�̂�) is a rational general solution of the
original AODE. Any curve-parametrizable first-order AODE can be
transformed into a quasi-linear ODE and this transformation
preserves rational general solutions.

Theorem ([VGW18])
There is a one-to-one correspondence between the rational
general solutions of a curve-parametrizable first-order
AODE and the rational general solutions of its associated
quasi-linear equation.
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Algorithm 2: RGS curve-param. first-order AODE [VGW18]
(simplified version)
Input : First-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0
Output :Rational general solution ̂𝑦 or string message

1 if the associated curve 𝒞𝐴 is rational then
2 Compute a proper rational parametrization

𝝍𝒞𝐴 = (𝜓1, 𝜓2) such that 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡).

3 Find a rational general solution �̂� of

𝜔′ =
𝜓2(𝜔) −

𝜕𝜓1(𝜔)
𝜕𝑥

𝜕𝜓1(𝜔)
𝜕𝜔

.

4 if no such solution exists then
5 return “AODE has no rational general solution”
6 else
7 return ̂𝑦 = 𝜓1(�̂�)
8 else
9 return “AODE is not curve-parametrizable”
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Example

Once again, consider the first-order AODE 𝑥3𝑦′ − 𝑦2 − 𝑥2𝑦 = 0
with ℱ = ℚ. The associated curve

𝒞𝐴 ≔ {(𝑎1, 𝑎2) ∈ 𝔸2(ℚ(𝑥)) | 𝑥3 𝑎2 − 𝑎21 − 𝑥2 𝑎1 = 0}.

is irreducible and can be parametrized by

𝝍𝒞𝐴 = (𝜓1 = 𝑥2(𝑥𝑡 − 1), 𝜓2 = 𝑥2𝑡(𝑥𝑡 − 1)).

The associated quasi-linear equation

𝜔′ = 2
𝑥2 −

4
𝑥𝜔 + 𝜔2

has the rational general solution �̂� = 2/𝑥 + 1/(𝐶 − 𝑥). From this we
obtain the solution ̂𝑦 = (𝐶𝑥2)/(𝐶 − 𝑥).
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Autonomous first-order AODEs

The case of an autonomous first-order AODE 𝐴(𝑦, 𝑦′) = 0 is
particularly easy. In this setting the zero-locus of 𝐴 defines the
curve

𝒞𝑎𝐴 ≔ {(𝑎1, 𝑎2) ∈ 𝔸2(ℱ) | 𝐴(𝑎1, 𝑎2) = 0}.

Definition
We call 𝒞𝑎𝐴 the associated autonomous curve (of the AODE).
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Let 𝝌𝒞𝑎
𝐴
= (𝜒1, 𝜒2), where 𝜒1, 𝜒2 ∈ ℱ(𝑡), be a proper rational

parametrization of the associated autonomous curve of an
autonomous first-order AODE 𝐴(𝑦, 𝑦′) = 0.

If this parametrization is if the form:

1. 𝜒2/𝜕𝜒1

𝜕𝑡
= 𝑎 ∈ ℱ: Then 𝑎(𝑥 + 𝐶) is a suitable rational

reparametrization and ̂𝑦 = 𝜒1(𝑎(𝑥 + 𝐶)) is a rational general
solution of the original AODE.

2. 𝜒2/𝜕𝜒1

𝜕𝑡
= 𝑎(𝑡 − 𝑏)2 ∈ ℱ[𝑡], 𝑎 ≠ 0: Then 𝑏 − 1/(𝑎(𝑥 + 𝐶)) is a

suitable rational reparametrization and
̂𝑦 = 𝜓1(𝑏 − 1/(𝑎(𝑥 + 𝐶))) is a rational general solution of the
original AODE.

Otherwise, 𝐴(𝑦, 𝑦′) = 0 has no rational general solution [FG04].2

2Except for the trivial differential equation 𝑐𝑦′ = 0, where 𝑐 ∈ ℱ ⧵ {0}.
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Algorithm 3: RGS autonomous first-order AODE [FG04]
(simplified version)
Input :Autonomous first-order AODE 𝐴(𝑦, 𝑦′) = 0
Output :Rational general solution ̂𝑦 or string message

1 if the associated autonomous curve 𝒞𝑎
𝐴 is rational then

2 Compute a proper rational parametrization

𝝌𝒞𝑎
𝐴
= (𝜒1, 𝜒2), where 𝜒1, 𝜒2 ∈ ℱ(𝑡)

and let 𝜇 = 𝜒2/𝜕𝜒1

𝜕𝑡
.

3

4 if 𝜇 = 𝑎 ∈ ℱ ⧵ {0} then
5 return ̂𝑦 = 𝜒1(𝑎(𝑥 + 𝐶))
6 else if 𝜇 = 𝑎(𝑡 − 𝑏)2 for some 𝑎, 𝑏 ∈ ℱ, 𝑎 ≠ 0 then
7 return ̂𝑦 = 𝜒1(𝑏 −

1
𝑎(𝑥+𝐶)

)

8 else
9 return “AODE has no rational general solution”
10 else
11 return “AODE has no rational general solution”
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Example

Consider the autonomous first-order AODE 𝑦′2 − 4𝑦3 = 0 with
ℱ = ℚ. The associated autonomous curve

𝒞𝑎𝐴 ≔ {(𝑎1, 𝑎2) ∈ 𝔸2(ℚ) | 𝑎22 − 4𝑎31 = 0}.

has the proper rational parametrization

𝝌𝒞𝑎
𝐴
= (𝜒1 =

𝑡2
4 , 𝜒2 =

𝑡3
4 ).

We see that 𝜇 = 𝜒2/𝜕𝜒1

𝜕𝑡
= 𝑡2/2 is of the second form with 𝑎 = 1/2

and 𝑏 = 0. From this we obtain the rational general solution
̂𝑦 = 𝜒1(𝑏 − 1/(𝑎(𝑥 + 𝐶))) = 1/(𝑥 + 𝐶)2.
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Summary

Three methods for finding rational general solutions of
first-order AODEs were discussed:

• Method 1 derives a solution from a proper rational
parametrization of an associated surface by solving an
associated planar rational system.

• Method 2 computes a proper rational parametrization of a
curve over a rational function field and derives a solution
by solving an associated quasi-linear equation.

• Method 3 is a special case for autonomous first-order
AODEs with a particularly easy reparametrization condition.

These methods are implemented in the Maple package AGADE
which is available at:
https://github.com/JohannMitteramskogler/AGADE.

23
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Demo
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Comparison of the methods



Relations between parametrizable first-order AODEs

Let the field ℱ be fixed.

Definition
Denote by 𝐀𝑂𝐷𝐸 the class of all first-order AODEs.
Furthermore, let 𝐀(𝑆𝑃)𝑂𝐷𝐸 and 𝐀

(𝐶𝑃)
𝑂𝐷𝐸 denote the subclasses of

first-order AODEs which are surface- and
curve-parametrizable, respectively.

How are these classes related?

Remark ([MW22])
Every curve-parametrizable first-order AODE is
surface-parametrizable and the inclusion is strict. In other
words 𝐀(𝐶𝑃)𝑂𝐷𝐸 ⊊ 𝐀(𝑆𝑃)𝑂𝐷𝐸. 24



Solvability of parametrizable first-order AODEs

Definition
Denote by 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 the subclass of 𝐀𝑂𝐷𝐸 that possess a
rational general solution.

A rational general solution contained in ℱ(𝐶)(𝑥), where 𝐶 is an
arbitrary constant, is called a strong rational general solution.

Definition
Denote by 𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 the subclass of 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 that possess a
strong rational general solution.
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Theorem ([VGW18])
The class of first-order AODEs with a strong rational general
solution coincides with the class of curve-parametrizable
first-order AODEs that possess a rational general solution.
In terms of the introduced notation
𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 = 𝐀(𝐶𝑃)𝑂𝐷𝐸 ∩ 𝐀

(𝑅𝐺𝑆)
𝑂𝐷𝐸 .

What about surface-parametrizable first-order AODEs? Since the
class of surface-parametrizable AODEs is strictly larger than the
class of curve-parametrizable AODEs, can we find more
solutions with this approach?
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Theorem ([MW22])
If a surface-parametrizable first-order AODE has a rational
general solution then the AODE has a strong rational
general solution.

Corollary
The class of first-order AODEs with a strong rational general
solution coincides with the class of surface-parametrizable
first-order AODEs that possess a rational general solution,
i.e. 𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 = 𝐀(𝑆𝑃)𝑂𝐷𝐸 ∩ 𝐀

(𝑅𝐺𝑆)
𝑂𝐷𝐸 .
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The full picture

𝐀𝑂𝐷𝐸

𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸𝐀(𝐶𝑃)𝑂𝐷𝐸 𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸𝐀(𝑆𝑃)𝑂𝐷𝐸

Example 2 Example 3 Example 4 Example 5

Example 1
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Example first-order AODEs

Example 1: 𝑦′2 + 𝑦3 + 1 = 0

Example 2: 𝑦′2 − 𝑦3 − 𝑥 = 0

Example 3: 𝑦′ − 𝑦 = 0

Example 4: 𝑦′ − 𝑦2 = 0 and ̂𝑦 = 1/(𝐶 − 𝑥) is a (strong) rational
general solution

Example 5: 𝑥2 𝑦′2 − 2𝑥 𝑦 𝑦′ − 𝑦′3 + 𝑦2 − 2 = 0 and
̂𝑦 = 𝐶𝑥 + √𝐶3 + 2 is a rational general solution
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Final remark

One cannot hope to find a rational general solution of a
surface-parametrizable first-order AODE if the associated curve
𝒞𝐴 is not rational. Given a proper rational parametrization
𝝍𝒞𝐴 = (𝜓1, 𝜓2) such that 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡), let
𝝋𝒮𝐴 = (𝜑0 = 𝑥, 𝜑1 = 𝜓1, 𝜑2 = 𝜓2) be the corresponding surface
parametrization. Due to the special shape of 𝝋𝒮𝐴 the associated
planar system simplifies to

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜎′ =
−𝜕𝜑1(𝜍,𝜏)

𝜕𝜏

−𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

= 1

𝜏′ =
𝜑2(𝜎, 𝜏) −

𝜕𝜑1(𝜍,𝜏)
𝜕𝜍

𝜕𝜑1(𝜍,𝜏)
𝜕𝜏

.

This system actually is equivalent to the associated quasi-linear
equation wrt. 𝝍𝒞𝐴 .
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Thank you!
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Appendix



Solutions of the associated planar system

Given an autonomous planar rational system

⎧

⎨
⎩

𝜎′ =
𝑀𝜍
𝑁𝜍

𝜏′ =
𝑀𝜏
𝑁𝜏

,

where 𝑀𝜍,𝑀𝜏 ∈ ℱ[𝜎, 𝜏] and 𝑁𝜍, 𝑁𝜏 ∈ ℱ[𝜎, 𝜏] ⧵ {0}. We may
assume w.l.o.g. that numerators and denominators are coprime.

Definition
A rational first integral of the autonomous planar rational
system is a rational function 𝐹 ∈ ℱ(𝜎, 𝜏) ⧵ ℱ such that

𝑀𝜍
𝑁𝜍

𝜕𝐹
𝜕𝜎 +

𝑀𝜏
𝑁𝜏

𝜕𝐹
𝜕𝜏 = 0.
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Solutions of such systems can be obtained by finding (rational)
first integrals. A rational first integral 𝐹 = 𝑃/𝑄, where 𝑃 and 𝑄 are
coprime, gives rise to an invariant algebraic curve.

If an irreducible factor of such an invariant algebraic curve can
be (properly) parametrized, then we have an algorithm for
finding rational general solutions.
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Algorithm 4: RGS planar rational system [NW11b]
Input :Autonomous planar rational system
Output :Rational general solution (�̂�, ̂𝜏) or string message

1 Compute a rational first integral 𝐹 = 𝑃/𝑄 ∈ ℱ(𝜍, 𝜏) ⧵ ℱ of the input system, where
𝑃,𝑄 ∈ ℱ[𝜍, 𝜏] are coprime.

2 if no such rational first integral exists then
3 return “Planar rational system has no rational general solution”
4 else
5 Let 𝐶 be a transcendental constant. Take any irreducible factor 𝐼 of

𝑃 −𝐾𝑄 ∈ ℱ(𝐶)[𝜍, 𝜏] and let 𝒞𝐼 be the plane curve defined by 𝐼.
6 if 𝒞𝐼 is rational then
7 Compute a proper rational parametrization

𝝍𝒞𝐼 = (𝜓1(𝑡), 𝜓2(𝑡)), where 𝜓1, 𝜓2 ∈ ℱ(𝐶)(𝑡).

8 Find a linear rational function �̂� ∈ ℱ(𝐶)(𝑥) that solves either

𝜔′ = 1
𝜕𝜓1(𝜔)/𝜕𝜔

𝑀𝜍(𝜓1(𝜔),𝜓2(𝜔))
𝑁𝜍(𝜓1(𝜔),𝜓2(𝜔))

or 𝜔′ = 1
𝜕𝜓2(𝜔)/𝜕𝜔

𝑀𝜏(𝜓1(𝜔),𝜓2(𝜔))
𝑁𝜏(𝜓1(𝜔),𝜓2(𝜔))

.

9 if such a linear rational function exists then
10 return (�̂�, ̂𝜏) = (𝜓1(�̂�), 𝜓2(�̂�))
11 return “Planar rational system has no rational general solution” 36


	Preliminaries
	Solution algorithms
	Comparison of the methods
	References
	Appendix

