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Introduction

Let K be an algebraically closed �eld of characteristic zero and ′

denote the usual derivative such that K is equal to the �eld of
constants.

A di�erential polynomial is of order n ∈ N if the n-th
derivative y (n) is the highest derivative appearing in it. We are
considering autonomous algebraic ordinary di�erential equations
(AODEs)

F (x , y , y ′, . . . , y (n)) = 0, (1)

where F ∈ K[x , y , . . . , y (n)] is of order n. Of particular interest will
be the case where n = 1 and F has constant coe�cients, i.e.
F ∈ K[y , y ′].
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Motivation and background

Goal

Given a single AODE F (x , y , . . . , y (n)) = 0, �nd all formal power
series solutions, i.e. all ỹ(x) =

∑
i≥0

ci
i! x

i ∈ K[[x ]] such that

F (x , ỹ(x), . . . , ỹ (n)(x)) = 0.

Example 1

Consider the AODE

F = y ′2 − y3 − y2 = 0,

which has no rational general solution, but in�nitely many formal
power series solutions such as ỹ(x) = tanh

(
c−x
2

)2 − 1.
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Motivation and background

E.L. Ince (1926): gives full understanding of linear ODEs.
J. Denef and L. Lipshitz (1984): �nd generic solutions of AODEs of
any order.
Newton-Puiseux technique for AODEs: �nds formal Puiseux series
solutions of AODEs of any order, but is not completely algorithmic.



Direct approach

We use the notation [xk ]ỹ(x) to refer to the coe�cient of xk of a
formal power series ỹ(x).

Lemma 1

Let ỹ =
∑

i≥0
ci
i! x

i ∈ K[[x ]]. Then ỹ(x) is a FPSS of

F (x , y , . . . , y (n)) = 0 i�

• [x0]F (x , ỹ(x), . . . , ỹ (n)(x)) = F (0, c0, . . . , cn) = 0.

• [xk ]F (x , ỹ(x), . . . , ỹ (n)(x)) = [x0]F (k)(x , ỹ(x), . . . , ỹ (k)(x)) =
F (k)(0, c0, . . . , cn+k) = 0 for every k ≥ 1.



Direct approach

Ritt's Lemma

Let F ∈ K[x , y , . . . , y (n)]. For every k ≥ 1 there exists
Rk ∈ K[x , y , . . . , y (n+k−1)] such that

F (k) =
∂F

∂y (n)
· y (n+k) + Rk .

Let ỹ(x) =
∑

i≥0
ci
i! x

i be a FPSS and ∂F
∂y (n) (0, c0, . . . , cn) 6= 0.

Then, for k ≥ 1,

0 = [x0]F (k)(x , ỹ(x), . . . , ỹ (n+k)(x))

= [x0]
∂F (x , ỹ(x), . . . , ỹ (n)(x))

∂y (n)
· ỹ (n+k)(x) + [x0]Rk(x , ỹ(x), . . . , ỹ

(n+k−1)(x))

=
∂F (0, c0, . . . , cn)

∂y (n)
· cn+k + Rk(0, c0, . . . , ck+n−1)
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Direct approach

Equivalently,

cn+k =
−Rk(0, c0, . . . , cn+k−1)

∂F (0,c0,...,cn)

∂y (n)

.

Regular formal power series solutions

To conclude, for a given AODE F ∈ K[x , y , . . . , y (n)], the formal
power series solutions ỹ(x) =

∑
i≥0

ci
i! x

i with
∂F
∂y (n) (0, c0, . . . , cn) 6= 0 can be computed iteratively.

Question: Can we say something about the solutions where
∂F
∂y (n) (0, c0, . . . , cn) = 0?
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Example 2

Consider the following AODE of order two:

F = x y ′′ − 3y ′ + x2y2 = 0.

The separant is
∂F

∂y (n)
(0, c0, c1, c2) = 0

for every initial values c0, c1, c2.



Direct approach

Ritt's formula can be re�ned as follows. For a di�erential
polynomial F ∈ K[x , y , . . . , y (n)] and k ,m ∈ N, we de�ne

fi =

{
∂ F
∂y (i) , i = 0, . . . , n;

0, otherwise;
, Bm(k) =

[(k
0

) (k
1

)
. . .

(k
m

)]
,

SF ,m =


fn fn−1 fn−2 · · · fn−m

0 f
(1)
n f

(1)
n−1 · · · f

(1)
n−m+1

0 0 f
(2)
n · · · f

(2)
n−m+2

...
...

...
...

...

0 0 0 · · · f
(m)
n

 ,Ym =


y (m)

y (m−1)

...
y

 .

The SF ,m are called m-th separant matrix of F .



Direct Approach

Re�nement of Ritt's Lemma

Let F ∈ K[x , y , . . . , y (n)]. Then for each m ∈ N and k > 2m there
exists a di�erential polynomial rn+k−m−1 with order less than or
equal to n + k −m − 1 such that

F (k) = Bm(k) · SF ,m · Y
(n+k−m)
m + rn+k−m−1. (2)

Almost all formal power series solutions

The formal power series solutions ỹ(x) =
∑

i≥0
ci
i! x

i with
SF ,m(0, c0, . . . , cn+m) 6= 0 can be computed iteratively.



Direct Approach

Re�nement of Ritt's Lemma

Let F ∈ K[x , y , . . . , y (n)]. Then for each m ∈ N and k > 2m there
exists a di�erential polynomial rn+k−m−1 with order less than or
equal to n + k −m − 1 such that

F (k) = Bm(k) · SF ,m · Y
(n+k−m)
m + rn+k−m−1. (2)

Almost all formal power series solutions

The formal power series solutions ỹ(x) =
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Example 2

For F = x y ′′ − 3y ′ + x2y2 = 0 a zero is c = (0, c0, 0, c2) where
c0, c2 are arbitrary constants in K. The �rst separant matrix is

SF ,1(c) =
[
∂ F
∂y (2) (c)

]
=
[
0
]
.

For F (1) = x y ′′′ − 2y ′′ + 2x2y ′y + 2xy2 and F (2) = 0, we uniquely
extend the initial value to c = (0, c0, 0, 0, 2c

2
0 ). Then, the second

separant matrix is

SF ,2(c) =

 ∂ F
∂y (2) (c)

∂ F
∂y (1) (c)

0
(
∂ F
∂y (2)

)(1)
(c)

 =

[
0 −3
0 1

]
.
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Using the re�nement of Ritt's formula, we obtain that every F (k)

with k > 2 can be written as

F (k)(c) = −3ck+1 + kck+1 + rk(0, c0, . . . , ck)

and hence,

ck+1 =
rk(0, c0, . . . , ck)

k − 3
.

The numerator could be zero i� k = 3, which we exclude. Checking
F (3)(c) ≡ 0, which is the case for arbitrary c4 ∈ K, we �nd the
family of solutions

y(x) ≡ c0+
c20
3

x3+
c4
24

x4− c30
18

x6− c0 c4
252

x7− c20 c4
3024

x10 mod x11.
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Direct Approach

Although for every di�erential polynomial F ∈ K[x , y , . . . , y (n)] and
FPSS ỹ(x) =

∑
i≥0

ci
i! x

i (or a reduced equation of F ) there is
m ∈ N such that SF ,m(0, c0, c1, . . .) 6= 0, this process is not
completely algorithmic. In other words, the m can in general not be
bounded a-priori.



Algebro-geometric approach

In the remaining lecture we will consider AODEs of order one with
constant coe�cients, i.e. F ∈ K[y , y ′].

By considering y and y ′ as independent variables (y and z), F
de�nes a plane a�ne algebraic curve

C(F ) = {(a, b) ∈ K2 | F (a, b) = 0}.

C(F ) is called the corresponding curve of F .
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Local parametrizations

A pair P ∈ K ((t))2 is called a local parametrization of C(F ) if

F (P) = 0

holds and at least one component is non-constant. P(0) is called
the center of P.

Local parametrizations can be computed by the Newton-Puiseux
algorithm and are well-understood.
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Newton-Puiseux algorithm

The �eld K〈〈t〉〉 =
⋃

n∈N∗ K((t1/n)) is called �eld of formal
Puiseux series and we call for ϕ(t) ∈ K〈〈t〉〉 the minimal n ∈ N
such that ϕ(t) ∈ K((t1/n)) the rami�cation index.

Starting with an algebraic equation F (y , z) = 0, we can compute its
solutions in z as formal Puiseux series (w.l.o.g. expanded around 0):

Strategy

• Consider for F (y , z) =
∑

i ,j≥0 fi ,jy
iz j the left part of the

convex hull of {(i , j) | fi ,j 6= 0} (the Newton polygon of F .)

• Take a side with slope −1/µ with points (i1, j1), . . . , (in, jn)
and n ≥ 2 lying on it.

• Compute c from
n∑

k=1

fik ,jk c
jk = 0.

• Repeat the process with z 7→ z + cxµ.
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Example 1

Let us consider again F = z2 − y3 − y2. By looking at the Newton
polygon of F we obtain µ = 1 and c2 − 1 = 0, hence, c = ±1.

We
continue with F (y ,±y + z) = ±2yz + z2 − y3 and its Newton
polygon. We obtain µ = 2,±2c − 1 = 0 and therefore, c = ∓1/2.
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Newton-Puiseux algorithm

In each step we take a slope µk > µk−1 with µk ∈ Q. There is a
bound for the number of steps from which on µk and ck are unique
and the denominator of µk does not increase anymore.

Given a Puiseux-expansion (y ,P((y − c0)
1/n)), a local

parametrization gets computed easily as

((t + c0)
n,P(t)) ∈ K((t))2.



Newton-Puiseux algorithm

In each step we take a slope µk > µk−1 with µk ∈ Q. There is a
bound for the number of steps from which on µk and ck are unique
and the denominator of µk does not increase anymore.
Given a Puiseux-expansion (y ,P((y − c0)

1/n)), a local
parametrization gets computed easily as

((t + c0)
n,P(t)) ∈ K((t))2.



Places

Let LocalPar(C(F )) denote the set of all local parametrizations of
C(F ). For P1,P2 ∈ LocalPar(C(F )) we de�ne the equivalence
relation P1 ∼ P2 i� there exists S ∈ K[[t]] with ord(S) = 1 such
that P1(S) = P2.
We work with elements in LocalPar(C(F ))/ ∼.



Example 1

For F = z2 − y3 − y2 the curve looks as follows.

Local parametrizations at the origin can be given by

(t,±t − t2/2+O(t3)).



Places

Let P ∈ LocalPar(C(F )). If there exists another
P∗ ∈ LocalPar(C(F )) and r > 1 with P = P∗(tr ) we say that P is
reducible.

A place is an equivalence class in LocalPar(C(F ))/ ∼ of an
irreducible local parametrization. The common center point is the
center of the place.

A place is the algebraic version of a branch:
If K = C, there exists for every branch a representative which
components are analytic (in a certain neighborhood of 0).
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First result

Lemma [Necessary Condition]

Let ỹ(x) ∈ K〈〈x〉〉 be a non-constant formal Puiseux series solution
of F (y , y ′) = 0 with rami�cation index equals n. Then

(a(t), b(t)) = (ỹ(tn), ỹ ′(tn)) ∈ LocalPar(C(F ))

is an irreducible place centered at (ỹ(0), ỹ ′(0)).

Consequently,

n = ordt(a(t)− y0)− ordt(b(t)).

Strategy

Find the centers and places of C(F ) containing a solution
parametrization.
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Order-suitability

Let (a, b) ∈ LocalPar(C(F )). We say that (a, b) is order-suitable if

n = ordt(a(t)− y0)− ordt(b(t)).

Note that order-suitability is independent of the representative of
the place.

Theorem [Necessary and Su�cient Condition]

Let P be a place of C(F ). Then P is a solution place if and only if
P is an order-suitable place. In the a�rmative case, P contains
exactly n non-constant solutions and they have rami�cation index
equals n.
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Critical Points

Let (c0, c1) ∈ C(F ) and let (a(t), b(t)) ∈ LocalPar(C(F )) be
centered at (c0, c1). If F is square-free, there are only �nitely many
such curve points (c0, c1) where (a(t), b(t)) is not order-suitable
with n = 1.

This corresponds to the curve points (critical points)
where the separant does vanish, i.e. ∂ F∂y ′ (c0, c1) = 0. Recall: For
non-critical curve points, we obtain a unique formal power series
solution.

Example 1

For F = y ′2 − y3 − y2 the critical points are (−1, 0), (0, 0).
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Summary

Algorithm arising from the proof

Given F ∈ K[y , y ′] square-free.

1) Compute a generic power series solution.

2) Compute the critical points (y0, p0) ∈ C(F ) ∩ C( ∂F∂y ′ ).
3) For every critical point compute a representative (a(t), b(t))

of every place at (y0, p0) and determine n.

4) Take s(t) = s1t + s2t
2 + · · · with si undetermined and

compute them from

a′(s(t)) s ′(t) = n tn−1 b(s(t)). (3)

Equation 3 is called the associated di�erential equation and can be
solved for example with the Newton-Puiseux method for di�erential
equations. Note that in every step we can ensure convergence.
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Remarks

Theorem [Convergence]

Let K = C. Then, all formal Puiseux series solutions of
F (y , y ′) = 0 are convergent.

Moreover, all the coe�cients of s(t) are in the same �eld as the
coe�cients of a(t) and b(t). In this way, we can also say something
about the �eld extensions in which the coe�cients of the solutions
are.
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Example 1

For F = y ′2 − y3 − y2, the local parametrizations at (0, 0), namely

(t,±t − t2/2+O(t3)),

are not order-suitable, whereas that one at (−1, 0),

(t2 − 1, t − t3)

is order-suitable with n = 1:

The associated di�erential equation

(a(s(t)))′ = 2s(t)s ′(t) = b(s(t)) = s(t)− s(t)3

leads to s(t) = t/2− t3/24+ t5/240+O(t7) and therefore,

a(s(x)) = −1+ x2/4− x4/24+O(x6).
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Example

Consider F (y , y ′) = ((y ′ − 1)2 + y2)3 − 4(y ′ − 1)2y2 = 0.



Then the critical points are

B = {(0, 1)} ∪
{
(α, 0) |α6 + 3α4 − α2 + 1 = 0

}
∪{(

4β
9 , γ

)
|β2 = 3, 27γ2 − 54γ + 19 = 0

}
∪ {∞,∞}

• At c1 = (0, 1) there are 4 places de�ned by

(a, b) = (t2, 1+
√
2t − 3t2

4
√
2
+O(t3)) suitable with n = 2

(−t2, 1−
√
2t − 3t2

4
√
2
+O(t3)) suitable with n = 2

(t, 1+ t2

2 + 3t4

16 +O(t6)) suitable with n = 1

(t, 1− t2

2 −
3t4

16 +O(t6)) suitable with n = 1
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For (a(t), b(t)) the associated di�erential equation is

s(t) s ′(t) = t

(
1+
√
2S(t)− 3S(t)2

4
√
2

)
with the solutions

s1(t) = t +
√
2t2

3 − t3

18 +O(t4),
s2(t) = −t +

√
2t2

3 + t3

18 +O(t4).

By considering all places at c1 we obtain
a(s1(x

1/2)) = x + 2
√
2x3/2

3 + x2

3 +O(x5/2),
a(s2(x

1/2)) = x − 2
√
2x3/2

3 + x2

3 +O(x5/2),
x + 2

√
2ix3/2

3 − x2

3 +O(x5/2), x − 2
√
2ix3/2

3 − x2

3 +O(x5/2),
x + x3

6 + 17x5

240 +O(x6), x − x3

6 + 17x5

240 +O(x6)





• For cα = (α, 0) with α6 + 3α4 − α2 + 1 = 0 we get the places(
α+ t,

(
11

19
α5 +

36

19
α3 +

4

19
α

)
t +O(t2)

)
,

which are not suitable.

• Let cβ,γ =
(
4β
9 , γ

)
, where β2 = 3, and 27γ2 − 54γ + 19 = 0.

Then the places(
4β

9
+ t2, γ +

√
βi√
3
t +O(t2)

)
are suitable with n = 2.



• Let us consider the curve point (∞,∞) ∈ C(F ). We do this by
considering instead c∞ = (0, 0) ∈ C(num(F (1/y ,−y ′/y2))).
We obtain the places

(t3,±it3 +O(t4)),

which are not suitable.
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