Formal Power Series Solutions of Algebraic Ordinary Differential Equations

Sebastian Falkensteiner
Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria
Guest Lecture "Computer Analysis",
June 15th, 2021

RISC
RESEARCH INSTITUTE FOR
SYMBOLIC COMPUTATION

The content of this talk has mainly taken from the papers

围 J. Cano and S. Falkensteiner and J.R. Sendra, Existence and Convergence of Puiseux Series Solutions for First Order Autonomous Differential Equations. Journal of Symbolic Computation (in print), 2020.

戋 S. Falkensteiner, N. Thieu Vo, Y. Zhang, On Formal Power Series Solutions of Algebraic Ordinary Differential Equations. 2020. arxiv.org/abs/1803.09646

Table of Contents

(1) Introduction
(2) Direct approach

- Generalized Separants
(3) First order AODEs with constant coefficients

4 Algebro-geometric approach

- Places
(5) Newton-Puiseux method
(6) Solution places
- Necessary condition
- Sufficient condition
- Computing formal Puiseux series solutions

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and ${ }^{\prime}$ denote the usual derivative such that \mathbb{K} is equal to the field of constants.

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and ${ }^{\prime}$ denote the usual derivative such that \mathbb{K} is equal to the field of constants. A differential polynomial is of order $n \in \mathbb{N}$ if the n-th derivative $y^{(n)}$ is the highest derivative appearing in it. We are considering autonomous algebraic ordinary differential equations (AODEs)

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

where $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$ is of order n.

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and ${ }^{\prime}$ denote the usual derivative such that \mathbb{K} is equal to the field of constants. A differential polynomial is of order $n \in \mathbb{N}$ if the n-th derivative $y^{(n)}$ is the highest derivative appearing in it. We are considering autonomous algebraic ordinary differential equations (AODEs)

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

where $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$ is of order n. Of particular interest will be the case where $n=1$ and F has constant coefficients, i.e.
$F \in \mathbb{K}\left[y, y^{\prime}\right]$.

Motivation and background

Goal

Given a single AODE $F\left(x, y, \ldots, y^{(n)}\right)=0$, find all formal power series solutions, i.e. all $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i} x^{i}}{} \in \mathbb{K}[[x]]$ such that

$$
F\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n)}(x)\right)=0 .
$$

Motivation and background

Goal

Given a single AODE $F\left(x, y, \ldots, y^{(n)}\right)=0$, find all formal power series solutions, i.e. all $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i} \in \mathbb{K}[[x]]$ such that

$$
F\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n)}(x)\right)=0
$$

Example 1

Consider the AODE

$$
F=y^{\prime 2}-y^{3}-y^{2}=0
$$

which has no rational general solution, but infinitely many formal power series solutions such as $\tilde{y}(x)=\tanh \left(\frac{c-x}{2}\right)^{2}-1$.

Motivation and background

E.L. Ince (1926): gives full understanding of linear ODEs. J. Denef and L. Lipshitz (1984): find generic solutions of AODEs of any order.
Newton-Puiseux technique for AODEs: finds formal Puiseux series solutions of AODEs of any order, but is not completely algorithmic.

Direct approach

We use the notation $\left[x^{k}\right] \tilde{y}(x)$ to refer to the coefficient of x^{k} of a formal power series $\tilde{y}(x)$.

Lemma 1

Let $\tilde{y}=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i} \in \mathbb{K}[[x]]$. Then $\tilde{y}(x)$ is a FPSS of $F\left(x, y, \ldots, y^{(n)}\right)=0$ iff

- $\left[x^{0}\right] F\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n)}(x)\right)=F\left(0, c_{0}, \ldots, c_{n}\right)=0$.
- $\left[x^{k}\right] F\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n)}(x)\right)=\left[x^{0}\right] F^{(k)}\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(k)}(x)\right)=$ $F^{(k)}\left(0, c_{0}, \ldots, c_{n+k}\right)=0$ for every $k \geq 1$.

Direct approach

Ritt's Lemma

Let $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$. For every $k \geq 1$ there exists $R_{k} \in \mathbb{K}\left[x, y, \ldots, y^{(n+k-1)}\right]$ such that

$$
F^{(k)}=\frac{\partial F}{\partial y^{(n)}} \cdot y^{(n+k)}+R_{k} .
$$

Direct approach

Ritt's Lemma

Let $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$. For every $k \geq 1$ there exists $R_{k} \in \mathbb{K}\left[x, y, \ldots, y^{(n+k-1)}\right]$ such that

$$
F^{(k)}=\frac{\partial F}{\partial y^{(n)}} \cdot y^{(n+k)}+R_{k} .
$$

Let $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i}$ be a FPSS and $\frac{\partial F}{\partial y^{(n)}}\left(0, c_{0}, \ldots, c_{n}\right) \neq 0$.
Then, for $k \geq 1$,

$$
\begin{aligned}
0 & =\left[x^{0}\right] F^{(k)}\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n+k)}(x)\right) \\
& =\left[x^{0}\right] \frac{\partial F\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n)}(x)\right)}{\partial y^{(n)}} \cdot \tilde{y}^{(n+k)}(x)+\left[x^{0}\right] R_{k}\left(x, \tilde{y}(x), \ldots, \tilde{y}^{(n+k-1)}(x)\right) \\
& =\frac{\partial F\left(0, c_{0}, \ldots, c_{n}\right)}{\partial y^{(n)}} \cdot c_{n+k}+R_{k}\left(0, c_{0}, \ldots, c_{k+n-1}\right)
\end{aligned}
$$

Direct approach

Equivalently,

$$
c_{n+k}=\frac{-R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)}{\frac{\partial F\left(0, c_{0}, \ldots, c_{n}\right)}{\partial y(n)}}
$$

Direct approach

Equivalently,

$$
c_{n+k}=\frac{-R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)}{\frac{\partial F\left(0, c_{0}, \ldots, c_{n}\right)}{\partial y^{(n)}}}
$$

Regular formal power series solutions

To conclude, for a given AODE $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$, the formal power series solutions $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i}$ with $\frac{\partial F}{\partial y^{(n)}}\left(0, c_{0}, \ldots, c_{n}\right) \neq 0$ can be computed iteratively.

Direct approach

Equivalently,

$$
c_{n+k}=\frac{-R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)}{\frac{\partial F\left(0, c_{0}, \ldots, c_{n}\right)}{\partial y^{(n)}}}
$$

Regular formal power series solutions

To conclude, for a given AODE $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$, the formal power series solutions $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i}$ with $\frac{\partial F}{\partial y^{(n)}}\left(0, c_{0}, \ldots, c_{n}\right) \neq 0$ can be computed iteratively.

Question: Can we say something about the solutions where $\frac{\partial F}{\partial y^{(n)}}\left(0, c_{0}, \ldots, c_{n}\right)=0$?

Example 2

Consider the following AODE of order two:

$$
F=x y^{\prime \prime}-3 y^{\prime}+x^{2} y^{2}=0 .
$$

The separant is

$$
\frac{\partial F}{\partial y^{(n)}}\left(0, c_{0}, c_{1}, c_{2}\right)=0
$$

for every initial values c_{0}, c_{1}, c_{2}.

Direct approach

Ritt's formula can be refined as follows. For a differential polynomial $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$ and $k, m \in \mathbb{N}$, we define

$$
\left.\begin{array}{c}
f_{i}=\left\{\begin{array}{llll}
\frac{\partial F}{\partial y^{(i)}}, & i=0, \ldots, n ; \\
0, & \text { otherwise; }
\end{array}, \quad \mathcal{B}_{m}(k)=\left[\begin{array}{lll}
k \\
0
\end{array}\right)\right. \\
\binom{k}{1}
\end{array} \ldots \quad\binom{k}{m}\right], ~\left[\begin{array}{ccccc}
f_{n} & f_{n-1} & f_{n-2} & \cdots & f_{n-m} \\
0 & f_{n}^{(1)} & f_{n-1}^{(1)} & \cdots & f_{n-m+1}^{(1)} \\
0 & 0 & f_{n}^{(2)} & \cdots & f_{n-m+2}^{(2)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & f_{n}^{(m)}
\end{array}\right], Y_{m}=\left[\begin{array}{c}
y^{(m)} \\
y^{(m-1)} \\
\vdots \\
y
\end{array}\right] .
$$

The $\mathcal{S}_{F, m}$ are called m-th separant matrix of F.

Direct Approach

Refinement of Ritt's Lemma

Let $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$. Then for each $m \in \mathbb{N}$ and $k>2 m$ there exists a differential polynomial $r_{n+k-m-1}$ with order less than or equal to $n+k-m-1$ such that

$$
\begin{equation*}
F^{(k)}=\mathcal{B}_{m}(k) \cdot \mathcal{S}_{F, m} \cdot Y_{m}^{(n+k-m)}+r_{n+k-m-1} . \tag{2}
\end{equation*}
$$

Direct Approach

Refinement of Ritt's Lemma

Let $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$. Then for each $m \in \mathbb{N}$ and $k>2 m$ there exists a differential polynomial $r_{n+k-m-1}$ with order less than or equal to $n+k-m-1$ such that

$$
\begin{equation*}
F^{(k)}=\mathcal{B}_{m}(k) \cdot \mathcal{S}_{F, m} \cdot Y_{m}^{(n+k-m)}+r_{n+k-m-1} . \tag{2}
\end{equation*}
$$

Almost all formal power series solutions

The formal power series solutions $\tilde{y}(x)=\sum_{i>0} \frac{c_{i}}{i!} x^{i}$ with $\mathcal{S}_{F, m}\left(0, c_{0}, \ldots, c_{n+m}\right) \neq \mathbf{0}$ can be computed iteratively.

Example 2

For $F=x y^{\prime \prime}-3 y^{\prime}+x^{2} y^{2}=0$ a zero is $\mathbf{c}=\left(0, c_{0}, 0, c_{2}\right)$ where c_{0}, c_{2} are arbitrary constants in \mathbb{K}. The first separant matrix is

$$
\mathcal{S}_{F, 1}(\mathbf{c})=\left[\frac{\partial F}{\partial y^{(2)}}(\mathbf{c})\right]=[0] .
$$

Example 2

For $F=x y^{\prime \prime}-3 y^{\prime}+x^{2} y^{2}=0$ a zero is $\mathbf{c}=\left(0, c_{0}, 0, c_{2}\right)$ where c_{0}, c_{2} are arbitrary constants in \mathbb{K}. The first separant matrix is

$$
\mathcal{S}_{F, 1}(\mathbf{c})=\left[\frac{\partial F}{\partial y^{(2)}}(\mathbf{c})\right]=[0] .
$$

For $F^{(1)}=x y^{\prime \prime \prime}-2 y^{\prime \prime}+2 x^{2} y^{\prime} y+2 x y^{2}$ and $F^{(2)}=0$, we uniquely extend the initial value to $\mathbf{c}=\left(0, c_{0}, 0,0,2 c_{0}^{2}\right)$. Then, the second separant matrix is

$$
\mathcal{S}_{F, 2}(\mathbf{c})=\left[\begin{array}{cc}
\frac{\partial F}{\partial y^{(2)}}(\mathbf{c}) & \frac{\partial F}{\partial y^{(1)}}(\mathbf{c}) \\
0 & \left(\frac{\partial F}{\partial y^{(2)}}\right)^{(1)}(\mathbf{c})
\end{array}\right]=\left[\begin{array}{cc}
0 & -3 \\
0 & 1
\end{array}\right]
$$

Using the refinement of Ritt's formula, we obtain that every $F^{(k)}$ with $k>2$ can be written as

$$
F^{(k)}(\mathbf{c})=-3 c_{k+1}+k c_{k+1}+r_{k}\left(0, c_{0}, \ldots, c_{k}\right)
$$

and hence,

$$
c_{k+1}=\frac{r_{k}\left(0, c_{0}, \ldots, c_{k}\right)}{k-3}
$$

Using the refinement of Ritt's formula, we obtain that every $F^{(k)}$ with $k>2$ can be written as

$$
F^{(k)}(\mathbf{c})=-3 c_{k+1}+k c_{k+1}+r_{k}\left(0, c_{0}, \ldots, c_{k}\right)
$$

and hence,

$$
c_{k+1}=\frac{r_{k}\left(0, c_{0}, \ldots, c_{k}\right)}{k-3}
$$

The numerator could be zero iff $k=3$, which we exclude. Checking $F^{(3)}(\mathbf{c}) \equiv 0$, which is the case for arbitrary $c_{4} \in \mathbb{K}$, we find the family of solutions
$y(x) \equiv c_{0}+\frac{c_{0}^{2}}{3} x^{3}+\frac{c_{4}}{24} x^{4}-\frac{c_{0}^{3}}{18} x^{6}-\frac{c_{0} c_{4}}{252} x^{7}-\frac{c_{0}^{2} c_{4}}{3024} x^{10} \bmod x^{11}$.

Direct Approach

Although for every differential polynomial $F \in \mathbb{K}\left[x, y, \ldots, y^{(n)}\right]$ and FPSS $\tilde{y}(x)=\sum_{i \geq 0} \frac{c_{i}}{i!} x^{i}$ (or a reduced equation of F) there is $m \in \mathbb{N}$ such that $\overline{\mathcal{S}}_{F, m}\left(0, c_{0}, c_{1}, \ldots\right) \neq \mathbf{0}$, this process is not completely algorithmic. In other words, the m can in general not be bounded a-priori.

Algebro-geometric approach

In the remaining lecture we will consider AODEs of order one with constant coefficients, i.e. $F \in \mathbb{K}\left[y, y^{\prime}\right]$.

Algebro-geometric approach

In the remaining lecture we will consider AODEs of order one with constant coefficients, i.e. $F \in \mathbb{K}\left[y, y^{\prime}\right]$.
By considering y and y^{\prime} as independent variables (y and z), F defines a plane affine algebraic curve

$$
\mathcal{C}(F)=\left\{(a, b) \in \mathbb{K}^{2} \mid F(a, b)=0\right\} .
$$

$\mathcal{C}(F)$ is called the corresponding curve of F.

Local parametrizations

A pair $\mathcal{P} \in K((t))^{2}$ is called a local parametrization of $\mathcal{C}(F)$ if

$$
F(\mathcal{P})=0
$$

holds and at least one component is non-constant. $\mathcal{P}(0)$ is called the center of \mathcal{P}.

Local parametrizations

A pair $\mathcal{P} \in K((t))^{2}$ is called a local parametrization of $\mathcal{C}(F)$ if

$$
F(\mathcal{P})=0
$$

holds and at least one component is non-constant. $\mathcal{P}(0)$ is called the center of \mathcal{P}.
Local parametrizations can be computed by the Newton-Puiseux algorithm and are well-understood.

Newton-Puiseux algorithm
The field $\mathbb{K}\langle\langle t\rangle\rangle=\bigcup_{n \in \mathbb{N}^{*}} \mathbb{K}\left(\left(t^{1 / n}\right)\right)$ is called field of formal Puiseux series and we call for $\varphi(t) \in \mathbb{K}\langle\langle t\rangle\rangle$ the minimal $n \in \mathbb{N}$ such that $\varphi(t) \in \mathbb{K}\left(\left(t^{1 / n}\right)\right)$ the ramification index.

Newton-Puiseux algorithm

The field $\mathbb{K}\langle\langle t\rangle\rangle=\bigcup_{n \in \mathbb{N}^{*}} \mathbb{K}\left(\left(t^{1 / n}\right)\right)$ is called field of formal Puiseux series and we call for $\varphi(t) \in \mathbb{K}\langle\langle t\rangle\rangle$ the minimal $n \in \mathbb{N}$ such that $\varphi(t) \in \mathbb{K}\left(\left(t^{1 / n}\right)\right)$ the ramification index. Starting with an algebraic equation $F(y, z)=0$, we can compute its solutions in z as formal Puiseux series (w.l.o.g. expanded around 0):

Strategy

- Consider for $F(y, z)=\sum_{i, j \geq 0} f_{i, j} y^{i} z^{j}$ the left part of the convex hull of $\left\{(i, j) \mid f_{i, j} \neq 0\right\}$ (the Newton polygon of F.)
- Take a side with slope $-1 / \mu$ with points $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n}, j_{n}\right)$ and $n \geq 2$ lying on it.
- Compute c from

$$
\sum_{k=1}^{n} f_{i_{k}, j_{k}} c^{j_{k}}=0
$$

- Repeat the process with $z \mapsto z+c x^{\mu}$.

Example 1

Let us consider again $F=z^{2}-y^{3}-y^{2}$. By looking at the Newton polygon of F we obtain $\mu=1$ and $c^{2}-1=0$, hence, $c= \pm 1$.

Example 1

Let us consider again $F=z^{2}-y^{3}-y^{2}$. By looking at the Newton polygon of F we obtain $\mu=1$ and $c^{2}-1=0$, hence, $c= \pm 1$. We continue with $F(y, \pm y+z)= \pm 2 y z+z^{2}-y^{3}$ and its Newton polygon. We obtain $\mu=2, \pm 2 c-1=0$ and therefore, $c=\mp 1 / 2$.

Newton-Puiseux algorithm

In each step we take a slope $\mu_{k}>\mu_{k-1}$ with $\mu_{k} \in \mathbb{Q}$. There is a bound for the number of steps from which on μ_{k} and c_{k} are unique and the denominator of μ_{k} does not increase anymore.

Newton-Puiseux algorithm

In each step we take a slope $\mu_{k}>\mu_{k-1}$ with $\mu_{k} \in \mathbb{Q}$. There is a bound for the number of steps from which on μ_{k} and c_{k} are unique and the denominator of μ_{k} does not increase anymore. Given a Puiseux-expansion $\left(y, P\left(\left(y-c_{0}\right)^{1 / n}\right)\right)$, a local parametrization gets computed easily as

$$
\left(\left(t+c_{0}\right)^{n}, P(t)\right) \in \mathbb{K}((t))^{2}
$$

Places

Let LocalPar $(\mathcal{C}(F))$ denote the set of all local parametrizations of $\mathcal{C}(F)$. For $\mathcal{P}_{1}, \mathcal{P}_{2} \in \operatorname{LocalPar}(\mathcal{C}(F))$ we define the equivalence relation $\mathcal{P}_{1} \sim \mathcal{P}_{2}$ iff there exists $S \in \mathbb{K}[[t]]$ with $\operatorname{ord}(S)=1$ such that $\mathcal{P}_{1}(S)=\mathcal{P}_{2}$.
We work with elements in LocalPar $(\mathcal{C}(F)) / \sim$.

Example 1

For $F=z^{2}-y^{3}-y^{2}$ the curve looks as follows.

Local parametrizations at the origin can be given by

$$
\left(t, \pm t-t^{2} / 2+\mathcal{O}\left(t^{3}\right)\right)
$$

Places

Let $\mathcal{P} \in \operatorname{LocalPar}(\mathcal{C}(F))$. If there exists another $\mathcal{P}^{*} \in \operatorname{LocalPar}(\mathcal{C}(F))$ and $r>1$ with $\mathcal{P}=\mathcal{P}^{*}\left(t^{r}\right)$ we say that \mathcal{P} is reducible.

Places

Let $\mathcal{P} \in \operatorname{LocalPar}(\mathcal{C}(F))$. If there exists another $\mathcal{P}^{*} \in \operatorname{LocalPar}(\mathcal{C}(F))$ and $r>1$ with $\mathcal{P}=\mathcal{P}^{*}\left(t^{r}\right)$ we say that \mathcal{P} is reducible.

A place is an equivalence class in LocalPar $(\mathcal{C}(F)) / \sim$ of an irreducible local parametrization. The common center point is the center of the place.

Places

Let $\mathcal{P} \in \operatorname{LocalPar}(\mathcal{C}(F))$. If there exists another $\mathcal{P}^{*} \in \operatorname{LocalPar}(\mathcal{C}(F))$ and $r>1$ with $\mathcal{P}=\mathcal{P}^{*}\left(t^{r}\right)$ we say that \mathcal{P} is reducible.

A place is an equivalence class in LocalPar $(\mathcal{C}(F)) / \sim$ of an irreducible local parametrization. The common center point is the center of the place.

A place is the algebraic version of a branch:
If $\mathbb{K}=\mathbb{C}$, there exists for every branch a representative which components are analytic (in a certain neighborhood of 0).

First result

Lemma [Necessary Condition]

Let $\tilde{y}(x) \in \mathbb{K}\langle\langle x\rangle\rangle$ be a non-constant formal Puiseux series solution of $F\left(y, y^{\prime}\right)=0$ with ramification index equals n. Then

$$
(a(t), b(t))=\left(\tilde{y}\left(t^{n}\right), \tilde{y}^{\prime}\left(t^{n}\right)\right) \in \operatorname{LocalPar}(\mathcal{C}(F))
$$

is an irreducible place centered at ($\tilde{y}(0), \tilde{y}^{\prime}(0)$).

First result

Lemma [Necessary Condition]

Let $\tilde{y}(x) \in \mathbb{K}\langle\langle x\rangle\rangle$ be a non-constant formal Puiseux series solution of $F\left(y, y^{\prime}\right)=0$ with ramification index equals n. Then

$$
(a(t), b(t))=\left(\tilde{y}\left(t^{n}\right), \tilde{y}^{\prime}\left(t^{n}\right)\right) \in \operatorname{LocalPar}(\mathcal{C}(F))
$$

is an irreducible place centered at $\left(\tilde{y}(0), \tilde{y}^{\prime}(0)\right)$. Consequently,

$$
n=\operatorname{ord}_{t}\left(a(t)-y_{0}\right)-\operatorname{ord}_{t}(b(t))
$$

First result

Lemma [Necessary Condition]

Let $\tilde{y}(x) \in \mathbb{K}\langle\langle x\rangle\rangle$ be a non-constant formal Puiseux series solution of $F\left(y, y^{\prime}\right)=0$ with ramification index equals n. Then

$$
(a(t), b(t))=\left(\tilde{y}\left(t^{n}\right), \tilde{y}^{\prime}\left(t^{n}\right)\right) \in \operatorname{LocalPar}(\mathcal{C}(F))
$$

is an irreducible place centered at $\left(\tilde{y}(0), \tilde{y}^{\prime}(0)\right)$. Consequently,

$$
n=\operatorname{ord}_{t}\left(a(t)-y_{0}\right)-\operatorname{ord}_{t}(b(t)) .
$$

Strategy

Find the centers and places of $\mathcal{C}(F)$ containing a solution parametrization.

Order-suitability

Let $(a, b) \in \operatorname{LocalPar}(\mathcal{C}(F))$. We say that (a, b) is order-suitable if

$$
n=\operatorname{ord}_{t}\left(a(t)-y_{0}\right)-\operatorname{ord}_{t}(b(t))
$$

Note that order-suitability is independent of the representative of the place.

Order-suitability

Let $(a, b) \in \operatorname{LocalPar}(\mathcal{C}(F))$. We say that (a, b) is order-suitable if

$$
n=\operatorname{ord}_{t}\left(a(t)-y_{0}\right)-\operatorname{ord}_{t}(b(t))
$$

Note that order-suitability is independent of the representative of the place.

Theorem [Necessary and Sufficient Condition]

Let \mathcal{P} be a place of $\mathcal{C}(F)$. Then \mathcal{P} is a solution place if and only if \mathcal{P} is an order-suitable place. In the affirmative case, \mathcal{P} contains exactly n non-constant solutions and they have ramification index equals n.

Critical Points

Let $\left(c_{0}, c_{1}\right) \in \mathcal{C}(F)$ and let $(a(t), b(t)) \in \operatorname{LocalPar}(\mathcal{C}(F))$ be centered at $\left(c_{0}, c_{1}\right)$. If F is square-free, there are only finitely many such curve points $\left(c_{0}, c_{1}\right)$ where $(a(t), b(t))$ is not order-suitable with $n=1$.

Critical Points

Let $\left(c_{0}, c_{1}\right) \in \mathcal{C}(F)$ and let $(a(t), b(t)) \in \operatorname{LocalPar}(\mathcal{C}(F))$ be centered at $\left(c_{0}, c_{1}\right)$. If F is square-free, there are only finitely many such curve points $\left(c_{0}, c_{1}\right)$ where $(a(t), b(t))$ is not order-suitable with $n=1$. This corresponds to the curve points (critical points) where the separant does vanish, i.e. $\frac{\partial F}{\partial y^{\prime}}\left(c_{0}, c_{1}\right)=0$. Recall: For non-critical curve points, we obtain a unique formal power series solution.

Critical Points

Let $\left(c_{0}, c_{1}\right) \in \mathcal{C}(F)$ and let $(a(t), b(t)) \in \operatorname{LocalPar}(\mathcal{C}(F))$ be centered at $\left(c_{0}, c_{1}\right)$. If F is square-free, there are only finitely many such curve points $\left(c_{0}, c_{1}\right)$ where $(a(t), b(t))$ is not order-suitable with $n=1$. This corresponds to the curve points (critical points) where the separant does vanish, i.e. $\frac{\partial F}{\partial y^{\prime}}\left(c_{0}, c_{1}\right)=0$. Recall: For non-critical curve points, we obtain a unique formal power series solution.

Example 1

For $F=y^{\prime 2}-y^{3}-y^{2}$ the critical points are $(-1,0),(0,0)$.

Summary

Algorithm arising from the proof

Given $F \in \mathbb{K}\left[y, y^{\prime}\right]$ square-free.

1) Compute a generic power series solution.
2) Compute the critical points $\left(y_{0}, p_{0}\right) \in \mathcal{C}(F) \cap \mathcal{C}\left(\frac{\partial F}{\partial y^{\prime}}\right)$.
3) For every critical point compute a representative $(a(t), b(t))$ of every place at $\left(y_{0}, p_{0}\right)$ and determine n.
4) Take $s(t)=s_{1} t+s_{2} t^{2}+\cdots$ with s_{i} undetermined and compute them from

$$
\begin{equation*}
a^{\prime}(s(t)) s^{\prime}(t)=n t^{n-1} b(s(t)) . \tag{3}
\end{equation*}
$$

Summary

Algorithm arising from the proof

Given $F \in \mathbb{K}\left[y, y^{\prime}\right]$ square-free.

1) Compute a generic power series solution.
2) Compute the critical points $\left(y_{0}, p_{0}\right) \in \mathcal{C}(F) \cap \mathcal{C}\left(\frac{\partial F}{\partial y^{\prime}}\right)$.
3) For every critical point compute a representative $(a(t), b(t))$ of every place at $\left(y_{0}, p_{0}\right)$ and determine n.
4) Take $s(t)=s_{1} t+s_{2} t^{2}+\cdots$ with s_{i} undetermined and compute them from

$$
\begin{equation*}
a^{\prime}(s(t)) s^{\prime}(t)=n t^{n-1} b(s(t)) . \tag{3}
\end{equation*}
$$

Equation 3 is called the associated differential equation and can be solved for example with the Newton-Puiseux method for differential equations. Note that in every step we can ensure convergence.

Remarks

Theorem [Convergence]
Let $\mathbb{K}=\mathbb{C}$. Then, all formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ are convergent.

Remarks

Theorem [Convergence]

Let $\mathbb{K}=\mathbb{C}$. Then, all formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ are convergent.

Moreover, all the coefficients of $s(t)$ are in the same field as the coefficients of $a(t)$ and $b(t)$. In this way, we can also say something about the field extensions in which the coefficients of the solutions are.

Example 1

For $F=y^{\prime 2}-y^{3}-y^{2}$, the local parametrizations at $(0,0)$, namely

$$
\left(t, \pm t-t^{2} / 2+\mathcal{O}\left(t^{3}\right)\right)
$$

are not order-suitable, whereas that one at $(-1,0)$,

$$
\left(t^{2}-1, t-t^{3}\right)
$$

is order-suitable with $n=1$:

Example 1

For $F=y^{\prime 2}-y^{3}-y^{2}$, the local parametrizations at $(0,0)$, namely

$$
\left(t, \pm t-t^{2} / 2+\mathcal{O}\left(t^{3}\right)\right)
$$

are not order-suitable, whereas that one at $(-1,0)$,

$$
\left(t^{2}-1, t-t^{3}\right)
$$

is order-suitable with $n=1$: The associated differential equation

$$
(a(s(t)))^{\prime}=2 s(t) s^{\prime}(t)=b(s(t))=s(t)-s(t)^{3}
$$

leads to $s(t)=t / 2-t^{3} / 24+t^{5} / 240+\mathcal{O}\left(t^{7}\right)$ and therefore,

$$
a(s(x))=-1+x^{2} / 4-x^{4} / 24+\mathcal{O}\left(x^{6}\right)
$$

Example

Consider $F\left(y, y^{\prime}\right)=\left(\left(y^{\prime}-1\right)^{2}+y^{2}\right)^{3}-4\left(y^{\prime}-1\right)^{2} y^{2}=0$.

Then the critical points are

$$
\begin{aligned}
\mathcal{B}= & \{(0,1)\} \cup\left\{(\alpha, 0) \mid \alpha^{6}+3 \alpha^{4}-\alpha^{2}+1=0\right\} \cup \\
& \left\{\left.\left(\frac{4 \beta}{9}, \gamma\right) \right\rvert\, \beta^{2}=3,27 \gamma^{2}-54 \gamma+19=0\right\} \cup\{\infty, \infty\}
\end{aligned}
$$

Then the critical points are

$$
\begin{aligned}
\mathcal{B}= & \{(0,1)\} \cup\left\{(\alpha, 0) \mid \alpha^{6}+3 \alpha^{4}-\alpha^{2}+1=0\right\} \cup \\
& \left\{\left.\left(\frac{4 \beta}{9}, \gamma\right) \right\rvert\, \beta^{2}=3,27 \gamma^{2}-54 \gamma+19=0\right\} \cup\{\infty, \infty\}
\end{aligned}
$$

- At $\mathbf{c}_{1}=(0,1)$ there are 4 places defined by

$$
\begin{array}{ll}
(a, b)=\left(t^{2}, 1+\sqrt{2} t-\frac{3 t^{2}}{4 \sqrt{2}}+\mathcal{O}\left(t^{3}\right)\right) & \text { suitable with } n=2 \\
\left(-t^{2}, 1-\sqrt{2} t-\frac{3 t^{2}}{4 \sqrt{2}}+\mathcal{O}\left(t^{3}\right)\right) & \text { suitable with } n=2 \\
\left(t, 1+\frac{t^{2}}{2}+\frac{3 t^{4}}{16}+\mathcal{O}\left(t^{6}\right)\right) & \text { suitable with } n=1 \\
\left(t, 1-\frac{t^{2}}{2}-\frac{3 t^{4}}{16}+\mathcal{O}\left(t^{6}\right)\right) & \text { suitable with } n=1
\end{array}
$$

For $(a(t), b(t))$ the associated differential equation is

$$
s(t) s^{\prime}(t)=t\left(1+\sqrt{2} S(t)-\frac{3 S(t)^{2}}{4 \sqrt{2}}\right)
$$

with the solutions

$$
\begin{aligned}
& s_{1}(t)=t+\frac{\sqrt{2} t^{2}}{3}-\frac{t^{3}}{18}+\mathcal{O}\left(t^{4}\right) \\
& s_{2}(t)=-t+\frac{\sqrt{2} t^{2}}{3}+\frac{t^{3}}{18}+\mathcal{O}\left(t^{4}\right)
\end{aligned}
$$

By considering all places at \mathbf{c}_{1} we obtain

$$
\left\{\begin{array}{l}
a\left(s_{1}\left(x^{1 / 2}\right)\right)=x+\frac{2 \sqrt{2} x^{3 / 2}}{3}+\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
a\left(s_{2}\left(x^{1 / 2}\right)\right)=x-\frac{2 \sqrt{2} x^{3 / 2}}{3}+\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
x+\frac{2 \sqrt{2} i x^{3 / 2}}{3}-\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), x-\frac{2 \sqrt{2} i x^{3 / 2}}{3}-\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
x+\frac{x^{3}}{6}+\frac{17 x^{5}}{240}+\mathcal{O}\left(x^{6}\right), x-\frac{x^{3}}{6}+\frac{17 x^{5}}{240}+\mathcal{O}\left(x^{6}\right)
\end{array}\right.
$$

- For $\mathbf{c}_{\alpha}=(\alpha, 0)$ with $\alpha^{6}+3 \alpha^{4}-\alpha^{2}+1=0$ we get the places

$$
\left(\alpha+t,\left(\frac{11}{19} \alpha^{5}+\frac{36}{19} \alpha^{3}+\frac{4}{19} \alpha\right) t+\mathcal{O}\left(t^{2}\right)\right)
$$

which are not suitable.

- Let $\mathbf{c}_{\beta, \gamma}=\left(\frac{4 \beta}{9}, \gamma\right)$, where $\beta^{2}=3$, and $27 \gamma^{2}-54 \gamma+19=0$.

Then the places

$$
\left(\frac{4 \beta}{9}+t^{2}, \gamma+\frac{\sqrt{\beta} i}{\sqrt{3}} t+\mathcal{O}\left(t^{2}\right)\right)
$$

are suitable with $n=2$.

- Let us consider the curve point $(\infty, \infty) \in \mathcal{C}(F)$. We do this by considering instead $\mathbf{c}_{\infty}=(0,0) \in \mathcal{C}\left(\operatorname{num}\left(F\left(1 / y,-y^{\prime} / y^{2}\right)\right)\right)$. We obtain the places

$$
\left(t^{3}, \pm i t^{3}+\mathcal{O}\left(t^{4}\right)\right)
$$

which are not suitable.

