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Abstract

Rational solutions of algebraic differential equations have been
studied a lot, certainly already by Fuchs and Poincaré. We are
particularly interested in first-order algebraic differential equations
(AODEs) of the form F(x,y,y’) =0, where F is a polynomial.
The main focus is on rational general solutions, i.e. solutions
which are rational functions and depend on an arbitrary
transcendental constant. Although in 2010 we have been able to
describe a symbolic solution algorithm, which works generically, to
this day there is no complete decision algorithm for the existence
of rational general solutions.

By modifying the problem slightly, we are able to present an
algorithm which decides the existence of a rational general solution
in which the arbitrary constant appears rationally. Such a solution
we call a strong rational general solution. If there exists one, our
algorithm will compute it.

Paper to be published in J. Symbolic Computation.
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Algebraic Ordinary Differential Equations (AODEs)

An algebraic ordinary differential equation (AODE) is given by

F(X,y,y,,...,y(n))207

where F is a differential polynomial in K[x]{y} with K being a
differential field and the derivation ’ being d%; ie, x' =1.

We assume that K is algebraically closed and of characteristic 0.
Such an AODE is autonomous iff the variable of differentiation x
does not explicitly appear in F.

We consider first-order AODEs, i.e. the case n = 1:

F(x,y,y')=0,

where y’ actually appears in F.
W.l.o.g. we may assume that F is irreducible as a polynomial in
K[x, y,y’]. Then F is also irreducible as an element of K(x)[y, y’].



According to Ritt, the radical differential ideal {F} can be
decomposed as

"= (0 0 (r )
(:a) " r)

general component  singular component

S is the separant of F (in general, the derivative of F w.r.t. y(").
Ritt shows that the general component is a prime differential ideal;
its generic zero is called a general solution of the AODE
F(x,y,y") = 0. Such a general solution must contain a
transcendental constant c.

J.F. Ritt, Differential Algebra (1950)



Problem: Rational general solution of AODE of order 1
given: an AODE F(x,y,y’) =0, F irreducible in K[x, y, y']
decide: does this AODE have a rational general solution

find: if so, find it

The study of first-order AODEs dates back to the work of L. Fuchs
and H. Poincaré.

Eremenko proved the existence of a degree bound for rational
solutions.

Chen and Ma combined an algebro-geometric method with Fuchs’
theorem on first-order AODEs without movable critical points.

L.Fuchs, “Uber Differentialgleichungen, deren Integrale ..." (1884)
H.Poincaré, “Sur un théoréme de M. Fuchs” (1885)

A.Eremenko, “Rational solution of first-order DEs" (1998)

G.Chen, Y.Ma, “Algorithmic reduction and ratinal general solutions of
first order algebraic differential equations” (2005)



Example 1 (Example 1.537 in Kamke)
Fxoy,y) = =y’ +x% = 2x°y =0
has the rational general solution
y(x) = ex(x + ¢%)
where c is an arbitrary constant.

E. Kamke, Differentialgleichungen, Lésungsmethoden und Losungen
(1997)



The idea is based on an algebro-geometric approach. Similar ideas
were already successfully used in Feng/Gao, Ngb/Winkler,
Grasegger/Lastra/Sendra/Winkler for computing rational solutions
of different classes of differential equations.

Recall that K is an algebraically closed field.

In contrast to our previous approach, in which we associated a
surface in A3(K) to a non-autonomous AODE of order 1, here we
associate a curve in A%(K(x)).

For a given first-order AODE F(x, y,y’) = 0 over K, we consider
the corresponding algebraic curve Cr defined by the algebraic
equation F(x,y,z) = 0 over K(x).

R.Feng, X.-S.Gao, Proc. ISSAC'04

L.X.C.Ngd, F.Winkler, J. Symbolic Computation (2010)
G.Grasegger, A.Lastra, J.R.Sendra, F.Winkler, J. Computational and
Applied Math. (2016)



The existence of a strong rational general solution (i.e. the
arbitrary constant ¢ appears rationally) implies the existence of a
rational parametrization of the algebraic curve Cr.

Algorithms for computing parametrizations of algebraic curves are
described, for instance, by Sendra/Winkler/Pérez-Diaz.

Given an optimal parametrization of Cg over the ground field
K(x), we can transform the AODE to a simpler ODE of the form
w’' = f(x,w), which is either linear or a Riccati equation.

This new ODE we call the associated AODE. Then there is a
one-to-one correspondence between rational general solutions of
the AODE and rational general solutions of its associated AODE.
Using this result it is possible to give a full decision algorithm.

J.R.Sendra, F.Winkler, S.Pérez-Diaz, Rational Algebraic Curves — A
computer algebra approach (2008)



The main result can be stated in two different ways:

» Given a first-order AODE for which the corresponding curve
admits a strong parametrization, we can decide the existence
of a rational general solution and compute it in the affirmative
case.

» Given any first-order AODE we can decide the existence of a
strong rational general solution and compute it in the
affirmative case.



Strong rational general solutions

Def. A solution y of the differential equation F(x,y,y’) =0 is
called a strong rational general solution iff

y = y(x, c) € K(x,c)\ K(x), where c is a transcendental constant
over K(x).

Example 2 The rational general solution in Example 1 is strong.
But the AODE

X3y/3 _ (3X2y _ 1)y/2 + 3Xy2y/ _ y3 +1=0
has a rational general solution
y() = ex+ (S +1)3

which is not strong. The curve Cg has genus 1. So this AODE
does not have a strong rational general solution, as we will see.



We give a necessary condition for a first-order AODE to admit a
strong rational general solution, i.e. a solution of the form

y(x,c) € K(x,c) \K(x), c a transcendental constant .

Theorem 1 Let F € K[x,y, z] \ K[x, y] be irreducible.

If the differential equation F(x,y,y’) = 0 has a strong rational
solution,

then its corresponding curve in A%(K(x)) is rational (i.e. rationally

parametrizable) and admits a parametrization with coefficients in
K(x).



The quality of the parametrization of the curve corresponding to
our given AODE will determine the existence of a strong rational
general solution.

In general, a rational plane algebraic curve defined over a field K
can always be rationally parametrized over a quadratic field
extension of K (see Hilbert/Hurwitz). We call a parametrization
optimal, if it has coefficients in a field of least extension degree
over the field of definition.

By a reasoning similar to the one in Sendra/Winkler/Pérez-Diaz
and Hillgarter/Winkler, one can prove the following theorem.

Theorem 2 Optimal parametrizations of a rational curve over
K(x) always have coefficients in K(x).

D.Hilbert, A.Hurwitz, “Uber die Diophantischen Gleichungen vom
Geschlecht Null” (1890)

E.Hillgarter, F.Winkler, “Points on algebraic curves and the
parametrization problem” (1998)



Example 1 cont. (Example 1.537 in Kamke) Consider the AODE
Fix,y,y) = (/' = y)* +x% —2x°y = 0.

The associated curve Cg defined by F(x,y,z) =0 can be
parametrized as

3% — 2x0 + (t —x)3  2t3x® — 220 4 (t — x)3
355 o 356 ‘

P(t) = (—

This is an optimal parametrization of Cg over Q(x).



The associated differential equation

Consider a parametrizable first-order AODE F(x,y,y’) =0 and
assume that an optimal parametrization

P(t) = (p1(t), p2(t)) € K(x)(t) x K(x)(t) of the corresponding
curve Cr is given.

Let y(x) € K(x) be an algebraic solution of the differential
equation.

Then the pair of two algebraic functions (y(x),y’(x)) can be seen
as a point on the corresponding curve Cr.

Two cases arise.

1. (y(x),y'(x)) € Cr \ im(P) (finite set) -
2. (y(x),y'(x)) = P(w(x)) for some w(x) € K(x).




The algebraic function w(x) satisfies the system

pr(x,w(x)) =y(x),  p2(x,w(x)) = y'(x) .

Therefore,
p1(x,w(x)) = p2(x, w(x)) -
By expanding the left hand side, we get

W) P2 ,000)) + PP, (x) = ol ()

Thus, w(x) either satisfies the algebraic relation

op1 op1
PP 00 =0, 222 (x,10(x) = ol )

or it is an algebraic solution of the quasi-linear differential equation

0
) Pa(xw) — FR(xw)

= d
T (xw)

This we call the associated differential equation.



Theorem 3 Let P(t) be a proper parametrization of the
associated curve Cr.

» There is a 1-1 correspondence between rational general
solutions of the given AODE and rational general solutions of
its associated differential equation.

» In particular, if w(x) is a rational general solution of the
associated equation, then y(x) = p1(x,w(x)) is a rational
general solution of the original AODE.

» Conversely, if y(x) is a rational general solution of the original
AODE, then w(x) = P~Y(y(x),y'(x)) is a rational general
solution of the associated equation.



As we have seen above, for finding rational solutions of a
parametrizable first-order AODE it suffices to work with the class
of quasi-linear first-order ODEs.

If we look for rational general solutions, the situation is even much
more restricted.

In fact, Behloul and Cheng proved that if a quasi-linear differential
equation has infinitely many rational solutions, then it must be
either a linear differential equation or a Riccati equation.

So, from Theorem 3 and the result of Behloul and Cheng we get
the following.

D. Behloul, S.S. Cheng, “Computation of rational solutions for a
first-order nonlinear differential equations” (2011)



Theorem 4 Let F(x,y,y’) = 0 be a first-order AODE.

1. If F(x,y,y") = 0 has a strong rational general solution, then
Cr is parametrizable and the associated differential equation is
a Riccati equation of the form

W' = ap(x) + a1(x)w + ap(x)w? ,

for some ag, a1, a» € K(x).

2. If F(x,y,y") = 0 has a rational general solution and Cf is
parametrizable, then the associated differential equation is of
the form above.

In the proof of this theorem, we use a result by Fuchs (or Behloul
and Cheng), which says: "If a quasi-linear ODE y’ = f(x, y),
where f is a rational function in x and y, has a rational general
solution, then it must be a linear or Riccati equation”. In case the
parametrization is not optimal, it may contain a square root of x
(or an algebraic function in x which is not rational). This square
root then also appears in the associated quasi linear ODE. In this
case, we cannot apply Fuchs' result.



F. Schwarz shows that if a Riccati equation has 3 special rational
solutions, then it has a strong rational general solution.
Combining this with Theorem 4 we get

Corollary If a parametrizable first-order AODE has a rational
general solution, then it has a strong rational general solution.

F.Schwarz, Algorithmic Lie theory for solving ordinary differential
equations (2008);
Cor. 2.1, p.18



We are looking for rational general solutions of first-order AODEs.
The remaining problem is to determine a rational general solution
of the associated equation in Theorem 4.

In the case ap = 0, it is a linear differential equation of degree 1
which can be easily solved by integration.

In the case ap # 0, it is a classical Riccati equation.

Kovacic presents a full algorithm for determining all rational
solutions of a Riccati equation. Note that for a Riccati equation,
the notions of rational general solutions and strong rational general
solutions coincide.

Chen and Ma modify Kovacic's algorithm slightly to determine
only strong rational general solutions.

The key for turning this approach into a decision algorithm is
Theorem 2: a rational curve over K(x) can be parametrized with
coefficients in K(x).

M.M.Kovacic, An algorithm for solving second order linear homogeneous
differential equations, J.Symb.Computation 2/2, 343, Section 3.1



The algorithm

We present a full algorithm which computes for a given first-order
AODE a strong rational general solution, if it exists. Otherwise it
decides that such a solution cannot exist.



Algorithm STRONG-RAT-GEN-SOLVE
Input:  a first-order AODE, F(x,y,y’) =0;

F € K[x,y, z] \ K[x, y] irreducible
Determine: a strong rational general solution y(x),

or "No strong rational general solution exists”

1. if genus of Cr is not zero then goto (5)

2. Compute optimal parametrization of Cg, say
(p1(x,t), p2(x, t)), with coefficients in K(x, t)
3. Determine associated differential equation

pa(x,t) = Fpi(x, 1)
%pl(xv t)
4. if f(x,t) has the form ap(x) + ar(x)t + ax(x)t?
for some agp, a1, a2 € K(x)
and the linear or Riccati equation w’ = f(x,w);
has a rational general solution w = w(x)
then return y(x) = p1(x,w(x))

f(x,t):=

5. return "No strong rational general solution exists".



Example 1 cont. (Example 1.537 in Kamke) Consider the AODE
Flxy,y") =0 =y’ +x% —2x°y = 0.

The associated curve Cr defined by F(x,y,z) =0 can be
parametrized as

3x% — t2x0 4 (t —x)3  263x% —2t°x0 4 (t — x)3
t3x5 T t3x0 ’

P(t) = <—
Therefore, the associated differential equation w.r.t. P is

w' = Fw(2w —X),
which is a Riccati equation. Kovacic's algorithm gives us the
. . o
rational gener.al. solution w(x) = 175 .
Hence, the original AODE F(x,y,y’) = 0 has the strong rational

general solution

y(x) = ex(x + ¢2) .



Observe, that this is just an arbitrary example from the collection
of Kamke. In total around 64 percent of the listed ODEs there are
AODEs and almost all of them are parametrizable and hence
suitable for algorithm STRONG-RAT-GEN-SOLVE. The remaining
ODEs without strong parametrization are either reducible or the
corresponding curve has higher genus. For more details see our
technical report RISC 15-19.



Conclusion

We have presented an algorithm for deciding whether a strong
rational general solution of a first-order AODE exists. In the
affirmative case the algorithm also computes such a solution.

» Given any first-order AODE we can decide the existence of a
strong rational general solution and compute it in the
affirmative case.

The algorithm is based on optimal curve parametrizations over the
field of rational functions.



Thank you for your attention!
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