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2. Elementary background material – Sylvester resultant
Let R be a commutative ring with identity element 1. In the first
subsection we shall review the definition of the classical Sylvester
resultant res(f , g) of f (x), g(x) ∈ R[x ]. We shall state the
requirements on R so that res(f , g) = 0 is a necessary and
sufficient condition for the existence in some extension of R of a
solution α to the system

f (x) = g(x) = 0 .

In the second subsection we review elementary differential algebra
on R. In particular we define the notion of a derivation on R, and
introduce the ring of differential polynomials over R. The
elementary background concepts from this section will provide the
foundation for the theory of the differential Sylvester resultant,
developed in the next section.



Sylvester resultant
We assume at the outset that R is an integral domain
(commutative ring with 1, and no zero divisors), and that K is its
quotient field.
Let

f (x) =
m∑
i=0

aix
i , g(x) =

n∑
j=0

bjx
j

be polynomials of positive degrees m and n, respectively, in R[x ].
If f and g have a common factor d(x) of positive degree, then
they have a common root in the algebraic closure K of K ; so the
system of equations

f (x) = g(x) = 0 (1)

has a solution in K .
On the other hand, if α ∈ K is a common root of f and g , then
normK(α):K (x − α) is a common divisor of f and g in K [x ]. So, by
Gauss’ Lemma (for which we need R to be a unique factorization
domain) on primitive polynomials there is a similar (only differing
by a factor in K ) common factor of f and g in R[x ].



We summarize these observations as follows:

Proposition 2.1. Let R be a unique factorization domain (UFD)
with quotient field K . For polynomials f (x), g(x) ∈ R[x ] the
following are equivalent:

(i) f and g have a common solution in K , the algebraic closure
of K ,

(ii) f and g have a common factor of positive degree in R[x ].



So now we want to determine a necessary condition for f and g to
have a common divisor of positive degree in R[x ]. Suppose that f
and g indeed have a common divisor d(x) of positive degree in
R[x ]; i.e.,

f (x) = d(x)f (x), g(x) = d(x)g(x). (2)

Then for p(x) := g(x), q(x) := −f (x) we have

p(x)f (x) + q(x)g(x) = 0. (3)

So there are non-zero polynomials p and q with
deg p < deg g , deg q < deg f , satisfying equation (3).



This means that the linear system

(
pn−1 · · · p0 qm−1 · · · q0

)
·

 A
· · ·
B

 = 0 , (4)

where

A =


am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

am am−1 · · · a0

 ∈ Rn
m+n ,

B =


bn bn−1 · · · b0

bn bn−1 · · · b0

. . .
. . .

bn bn−1 · · · b0

 ∈ Rm
m+n ,

has a non-trivial solution.



The matrix of this system (4) is called the Sylvester matrix of f
and g . Thus, the determinant of the Sylvester matrix of f and g is
0. The resultant of f and g , res(f , g), is this determinant, and it is
clear that the resultant is a polynomial expression of the
coefficients of f and g , and therefore an element of the integral
domain R. This does not require R to be a UFD. Summarizing:

Proposition 2.2. Let f , g ∈ R[x ], for R an integral domain.
res(f , g) = 0 is a necessary condition for f and g to have a
common factor of positive degree.



If we identify a polynomial of degree d with the vector of its
coefficients of length d + 1, we may also express this in terms of
the linear map

S : Km+n −→ Km+n

(pn−1, . . . , p0, qm−1, . . . , q0) 7→ coefficients of pf + qg

Obviously the existence of a non-trivial linear combination (3) is
equivalent to S having a non-trivial kernel, and therefore to S
having determinant 0.



But is the vanishing of the resultant also a sufficient condition for
f and g to have a common factor of positive degree? Suppose that
res(f , g) = 0. This means that (3) has a non-trivial solution
u(x), v(x) of bounded degree; so

u(x)f (x) = −v(x)g(x) .

These co-factors will be in K [x ], but of course we can clear
denominators and have a similar relation with co-factors in R[x ]. If
we now require the coefficient domain R to be a unique
factorization domain (UFD), we see that every irreducible factor of
f must appear on the right hand side with at least the same
multiplicity. Not all of these factors can be subsumed in v , because
v is of lower degree than f . So at least one of the irreducible
factors of f must divide g . Thus we have:

Proposition 2.3. Let f , g ∈ R[x ], for R a UFD.
res(f , g) = 0 is also a sufficient condition for f and g to have a
common factor of positive degree; and therefore a common
solution in K .



A further property is of interest and importance.

Proposition 2.4. The resultant is a constant in the ideal
generated by f and g in R[x ]; i.e. we can write

res(f , g) = u(x)f (x) + v(x)g(x), (5)

with u, v ∈ R[x ]. Moreover, these cofactors satisfy the degree
bounds deg(u) < deg(g), deg(v) < deg(f ).



Proof: We follow an argument given in [4]. In fact, Collins proves
this fact for R being a general commutative ring with 1.

Consider the Sylvester matrix S = (A
...B)T ; i.e. the

(m + n)× (m + n) matrix, whose first n rows consist of the
coefficients of

xn−1 · f (x), . . . , x · f (x), f (x) ,

and whose last m rows consist of the coefficients of

xm−1 · g(x), . . . , x · g(x), g(x) .

Now, for 1 ≤ i < m + n, multiply the ith column of S by xm+n−i

and add to the last column. This will result in a new matrix T ,
having the same determinant as S . The columns of T are the
same as the corresponding columns of S , except for the last
column, which consists of the polynomials

xn−1 · f (x), . . . , x · f (x), f (x), xm−1 · g(x), . . . , x · g(x), g(x) .

Expanding the determinant of T w.r.t. its last column, we obtain
polynomials u(x) and v(x) satisfying the relation (5), and also the
degree bounds.



An alternative approach (similar to that above but with a slightly
different emphasis) to defining the Sylvester resultant of f (x) and
g(x) is to regard all the coefficients ai and bj of f and g as
distinct and unrelated indeterminates. The indeterminates am and
bn are then referred to as the formal leading coefficients of f and
g , respectively. In effect we take R to be the domain
Z[am, . . . , a0, bn, . . . , b0]. This approach allows us to study the
resultant res(f , g) as a polynomial in the m + n + 2 indeterminates
ai and bj . Indeed it is not hard to see that res(f , g) is
homogeneous in the ai of degree n, homogeneous in the bj of
degree m, and has the “principal term” anmb

m
0 (from the principal

diagonal). With this approach, adjustment of some of the basic
facts is needed. For example, the analogue of Proposition 2.3
would state that, for D a UFD, after replacement of all the
coefficients ai and bj by elements of D, res(f , g) = 0 is a sufficient
condition for either f (x) and g(x) to have a common factor of
positive degree, or am = bn = 0.



Another variation on defining the Sylvester resultant of two
polynomials is to start instead with two homogeneous polynomials
F (x , y) =

∑m
i=0 aix

iym−i and G (x , y) =
∑

j=0 bjx
jyn−j . Let us

similarly regard the coefficients ai and bj as indeterminates. Then
the resultant of F and G is defined as res(F ,G ) = res(f , g), where
f (x) = F (x , 1) and g(x) = G (x , 1). Our analogue of Proposition
2.3 then becomes simpler. Combining it with homogeneous
analogues of Propositions 2.1 and 2.2 we have:

Proposition 2.5. After assigning values to the coefficients from a
UFD D, res(F ,G ) = 0 is a necessary and sufficient condition for
F (x , y) and G (x , y) to have a common factor of positive degree
over D, hence for a common zero to exist over an extension of the
quotient field of D.



An ideal I of a differential ring R is known as a differential ideal if
r ∈ I implies r ′ ∈ I . If r1, . . . , rn ∈ R we denote by 〈r1, . . . , rn〉 the
differential ideal generated by r1, . . . , rn, that is, the ideal
generated by the ri and all their derivatives.

Example 2.6. The familiar rings such as Z, Q, R and C are
differential rings if we set ∂(a) = 0 for all elements a.

Example 2.7. Let K be a field and t an indeterminate over K .
Then K [t], equipped with the derivation ∂ = d/dt, is a differential
integral domain and its quotient field K (t) is a differential field,
again with standard differentiation as its derivation. K is the ring
(field) of constants of K [t] (K (t)).



Example 2.8. Let (R, ∂) be a differential ring. Let
x = x (0), x (1), x (2), . . . be distinct indeterminates over R. Put
∂(x (i)) = x (i+1) for all i ≥ 0. Then ∂ can be extended to a
derivation on the polynomial ring R{x} := R[x (0), x (1), . . .] in a
natural way, and we denote this extension also by ∂. The ring
R{x} together with this extended ∂ is a differential ring, called the
ring of differential polynomials in the differential indeterminate x
over R. An element f (x) =

∑m
i=0 aix

(i) of R{x} with am 6= 0 has
order m and leading coefficient am.

(Remark. It may be helpful to think of elements of R and of
x , x (1), . . . as functions of an indeterminate t, and to regard ∂ as
differentiation with respect to t.) If (K , ∂) is a differential field
then K{x} is a differential integral domain, and its derivation
extends uniquely to the quotient field. We write K 〈x〉 for this
quotient field; its elements are differential rational functions of x
over K .



3. Differential Sylvester resultant

Let (R, ∂) be a differential integral domain. Recall from Section 2
that the ring (indeed domain) of differential polynomials in the
differential indeterminate x is denoted by R{x}. Then R{x} is also
a (left) R-module, and we denote by RLH{x} the R-submodule
comprising those elements of R{x} which are linear and
homogeneous. We aim in this section to define a certain resultant,
known as a differential Sylvester resultant, of two elements of
RLH{x}. We shall begin by studying a closely related
noncommutative ring: namely, we consider the ring R[∂] of linear
differential operators on R. As we shall see, there is an important
relationship between R[∂], considered as left R-module, and
RLH{x}: these are isomorphic as left R-modules. Thus the
differential theory of R[∂] and RLH{x} can to an extent be
developed in parallel. The details are provided in the next two
subsections.



We consider the ring of linear differential operators R[∂], where the
application of A =

∑m
i=0 ai∂

i to r ∈ R is defined as

A(r) =
m∑
i=0

ai r
(i) .

Here r (i) denotes the i-fold application of ∂ (that is, ′) to r . If
am 6= 0, the order of A is m and am is the leading coefficient of A.
Now the application of A can naturally be extended to K , and to
any extension of K . If A(η) = 0, with η in R, K or any extension
of K , we call η a root of the linear differential operator A.

The application of the constant operator r to a yields
r(a) = r · a(0) = r · a.



The ring R[∂] is non-commutative; let us see what the
commutation rule is. If we apply ∂r to a we get

∂r(a) = ∂(ra) = r∂(a) + (∂(r))a = r∂(a) + r ′a = (r∂ + r ′)(a).

So the corresponding rule for the multiplication of ∂ by an element
of r ∈ R is

∂r = r∂ + r ′ .

Note that ∂r , which denotes the operator product of ∂ and r , is
distinct from ∂(r) (that is, from r ′), the application of map ∂ to r .



Proposition 3.1. For n ∈ N: ∂nr =
∑n

i=0

(n
i

)
r (n−i)∂ i .

Proof: For n = 0 this obviously holds.
Assume the fact holds for some n ∈ N. Then

∂n+1r = ∂(∂nr) = ∂
(∑n

i=0

(
n
i

)
r (n−i)∂ i

)
=

∑n
i=0

(
n
i

)
∂r (n−i)∂ i =

∑n
i=0

(
n
i

)
[r (n−i)∂ + r (n−i+1)]∂ i

=
∑n

i=0

(
n
i

)
r (n−i)∂ i+1 +

∑n
i=0

(
n
i

)
r (n−i+1)∂ i

=
∑n+1

i=1

(
n

i−1

)
r (n+1−i)∂ i +

∑n
i=0

(
n
i

)
r (n−i+1)∂ i

=
(
n
n

)
r (0)∂n+1 +

∑n
i=1[
(

n
i−1

)
+
(
n
i

)
]r (n+1−i)∂ i +

(
n
0

)
r (n+1)∂0

=
∑n+1

i=0

(
n+1
i

)
r (n+1−i)∂ i .



From a linear homogeneous ODE p(x) = 0, with p(x) ∈ R{x},

p(x) = p0(t)x + p1(t)x ′ + · · ·+ pn(t)x (n) = 0 ,

we can extract a linear differential operator

O(p) = A =
n∑

i=0

pi∂
i ,

such that the given ODE can be written as

A(x) = 0,

in which x is regarded as an unknown element of R, K or some
extension of K . Such a linear homogeneous ODE always has the
trivial solution x = 0; so a linear differential operator always has
the trivial root 0.



In [3] it is stated that K [∂] is left-Euclidean, and a few brief
remarks are provided by way of proof. It follows from the
left-Euclidean property that every left-ideal K I of the form

K I = (A,B) is principle, and is generated by the right-gcd of A
and B. As remarked in [3] with reference to [5], under suitable
assumptions on K , any linear differential operator of positive order
has a root in some extension of K . We state this result precisely.

Theorem 3.2. (Ritt-Kolchin). Assume that the differential field
K has characteristic 0 and that its field C of constants is
algebraically closed. Then, for any linear differential operator A
over K of positive order n, there exist n roots η1, . . . , ηn in a
suitable extension of K , such that the ηi are linearly independent
over C . Moreover, the field K 〈η1, . . . , ηn〉 contains no constant not
in C .

This result is stated and proved in [7] using results from [6] and [8].
The field K 〈η1, . . . , ηn〉 associated with A is known as a
Picard-Vessiot extension of K (for A).
Henceforth assume the hypotheses of Theorem 3.2.



It follows from Theorem 3.2 (Ritt-Kolchin) that if the operators
A,B ∈ K [∂] have a common factor F of positive order on the
right, i.e.,

A = A · F , and B = B · F , (6)

then they have a non-trivial common root in a suitable extension of
K . For by Theorem 3.2, F has a root η 6= 0 in an extension of K .
We have A(η) = Ā(F (η)) = Ā(0) = 0 and similarly B(η) = 0.



On the other hand, if A and B have a non-trivial common root η
in a suitable extension of K , we show that they have a common
right factor of positive order in K [∂]. Let F be a nonzero
differential operator of lowest order s.t. F (η) = 0. Then F has
positive order. Because the ring of operators is left-Euclidean, F is
unique up to multiplication of non-zero elements of K . This F is a
right divisior of both A and B. To see this, apply division in the
left-Euclidean ring K [∂]:

A = Q · F + R,

with the order of R less than the order of F , or R = 0. Apply both
sides of this equation to η:

A(η) = (Q · F )(η) + R(η).

Since A(η) = 0 and F (η) = 0, R(η) = 0. Therefore, by minimality
of F , R = 0. Hence F is a right divisor of A. We see that F is a
right divisor of B similarly.

We summarize our result in the following theorem, which is the
closest analogue of Proposition 2.1 we can state.



Theorem 3.3. Assume that K has characteristic 0 and that its
field of constants is algebraically closed. Let A,B be differential
operators of positive orders in K [∂]. Then the following are
equivalent:

(i) A and B have a common non-trivial root in an extension of K ,

(ii) A and B have a common factor of positive order on the right
in K [∂].



Now let us see that the existence of a non-trivial factor (6) is
equivalent to the existence of a non-trivial order-bounded linear
combination

CA + DB = 0 , (7)

with order(C ) < order(B) and order(D) < order(A), and
(C ,D) 6= (0, 0).
For given A,B ∈ K [∂], with m = order(A), n = order(B), consider
the linear map

S : Km+n −→ Km+n

(cn−1, . . . , c0, dm−1, . . . , d0) 7→ coefficients of CA + DB
(8)

Obviously the existence of a non-trivial linear combination (7) is
equivalent to S having a non-trivial kernel, and therefore to S
having determinant 0. Indeed we have the following result.



Theorem 3.4. det(S) = 0 if and only if A and B have a common
factor (on the right) in K [∂] of positive order.

Proof: Suppose det(S) = 0. This means that S cannot be
surjective. Now the right-gcd G of A and B can be written as an
order-bounded linear combination of A and B, so it is in the image
of the map S . This means that G cannot be trivial (that is, G
cannot be an element of K ), because otherwise S would be
surjective.

On the other hand, suppose that det(S) 6= 0. Then the linear map
is invertible; in particular, it is surjective. Therefore there exist
C ,D ∈ K [∂] with appropriate degree bounds, s.t. 1 = CA + DB.
So every common divisor (on the right) of A and B is a common
divisor of 1. Therefore no common divisor of A and B could have
positive order.



So let us see which linear conditions on the coefficients of A and B
we get by requiring that (7) has a non-trivial solution of bounded
order, i.e.,

order(C ) < order(B) and order(D) < order(A).



Example 3.5. order(A) = 2 = order(B)

(c1∂ + c0)(a2∂
2 + a1∂ + a0) + (d1∂ + d0)(b2∂

2 + b1∂ + b0)

order 3:
c1∂a2∂

2 = c1(a2∂ + a′2)∂2 = c1a2∂
3 + c1a

′
2∂

2

d1∂b2∂
2 = d1(b2∂ + b′2)∂2 = d1b2∂

3 + d1b
′
2∂

2

order 2:

c1a
′
2∂

2 (from above)+c1∂a1∂+c0a2∂
2 = c1a

′
2∂

2+c1a1∂
2+c0a2∂

2+c1a
′
1∂

analogous for b and d

order 1:

c1a
′
1∂ (from above) + c1∂a0 + c0a1∂ = c1a

′
1∂ + c1(a0∂ + a′0) + c0a1∂

= c1a
′
1∂ + c1a0∂ + c0a1∂ + c1a

′
0

analogous for b and d



order 0:
c1a
′
0 (from above) + c0a0

analogous for b and d

So, finally,

(
c1 c0 d1 d0

)
·


a2 a1 + a′2 a0 + a′1 a′0
0 a2 a1 a0

b2 b1 + b′2 b0 + b′1 b′0
0 b2 b1 b0

 =
(
0 0 0 0

)
.

Observe, that the rows of this matrix consist of the
coefficients of

∂A, A, ∂B , B .

Comparing this to the example in [3], p.3, we see that after
interchanging of rows this is the same matrix.



Example 3.6. order(A) = 2, order(B) = 3

(c2∂ + c1∂ + c0)(a2∂
2 + a1∂ + a0) + (d1∂ + d0)(b3∂

3 + b2∂
2 + b1∂ + b0)

order 4:
c2∂

2a2∂
2 + d1∂b3∂

3 = 0

a2c2∂
4 + 2a′2c2∂

3 + a′′2 c2∂
2 + b3d1∂

4 + b′3d1∂
3 = 0

order 3:

(2a′2c2∂
3 + a′′2 c2∂

2
from above) + c2∂

2a1∂ + c1∂a2∂
2 + (b′3d1∂

3
from above) + d1∂b2∂

2 + d0b3∂
3 = 0

2a′2c2∂
3 + a1c2∂

3 + a2c1∂
3 + a′′2 c2∂

2 + 2a′1c2∂
2 + a′′1 c2∂ + b′3d1∂

3 + b2d1∂
3 + b3d0∂

3 + b′2d1∂
2 = 0

order 2:

(a′′2 c2∂
2 + 2a′1c2∂

2 + a′′1 c2∂ + a′2c1∂
2 from above) + c2∂

2a0 + c1∂a1∂ + c0a2∂
2

+(b′2d1∂
2 from above) + d1∂b1∂ + d0b2∂

2 = 0

a′′2 c2∂
2 + 2a′1c2∂

2 + a′′1 c2∂ + a′2c1∂
2 + a0c2∂

2 + 2a′0c2∂ + a′′0 c2 + a1c1∂
2 + a′1c1∂ + a2c0∂

2

+b′2d1∂
2 + b1d1∂

2 + b′1d1∂ + b2d0∂
2 = 0



order 1:

(a′′1 c2∂ + 2a′0c2∂ + a′′0 c2 + a′1c1∂ from above) + c1∂a0 + c0a1∂ + (b′1d1∂ from above) +d1∂b0 +d0b1∂ = 0

a′′1 c2∂ + 2a′0c2∂ + a′1c1∂ + a0c1∂ + a′0c1 + a1c0∂ + a′′0 c2 + b′1d1∂ + b0d1∂ + b′0d1 + b1d0∂ = 0

order 0:
(a′0c1 + a′′0 c2 from above) + a0c0 + (b′0d1 from above) + b0d0 = 0.

So, finally

(
c2 c1 c0 d1 d0

)
·


a2 a1 + 2a′2 a0 + 2a′1 + a′′2 2a′0 + a′′1 a′′0
0 a2 a1 + a′2 a0 + a′1 a′0
0 0 a2 a1 a0
b3 b2 + b′3 b1 + b′2 b0 + b′1 b′0
0 b3 b2 b1 b0

 =
(

0 · · · 0
)

.

Observe, that the rows of this matrix consist of the coefficients of

∂2A, ∂A, A, ∂B, B .



Theorem 3.7. The linear map S in (8) corresponding to (7) is
given by the matrix whose rows are
∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B.

Proof: Let v = (cn−1, . . . , c0, dm−1, . . . , d0).
Consider an index i between 1 and n. If cn−i = 1, and all the other
components of v are 0, then v is mapped by S to
∂n−i · A + 0 · B = ∂n−iA. So the i-th row of S has to consist of the
coefficients of ∂n−iA.
Consider an index j between 1 and m. If dm−j = 1, and all the other
components of v are 0, then v is mapped by S to
0 · A + ∂m−j · B = ∂m−jB. So the (n + j)-th row of S has to consist of
the coefficients of ∂m−jB.



Definition 3.8. Let A,B be linear differential operators in R[∂] of
order(A) = m, order(B) = n, with m, n > 0.
By ∂syl(A,B) we denote the (differential) Sylvester matrix; i.e.,
the (m+n)× (m+n)-matrix whose rows contain the coefficients of

∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B .

The (differential Sylvester) resultant of A and B, ∂res(A,B), is the
determinant of ∂syl(A,B).



From Theorems 3.3 and 3.4 the following analogue of Propositions
2.2 and 2.3 is immediate.
Theorem 3.9. Assume that K has characteristic 0 and that its
field of constants is algebraically closed. Let A,B be linear
differential operators over R of positive orders. Then the condition
∂res(A,B) = 0 is both necessary and sufficient for there to exist a
common non-trivial root of A and B in an extension of K .



Example: Consider the operators

A = 2x − (x2 +
1

6
)∂ , B = (6x2 + 2)− (3x3 +

1

2
x)∂ − (x2 +

1

6
)∂2 .

These operators correspond to the differential equations

2x ·y−(x2 +
1

6
)·y ′ = 0, (6x2 +2)·y−(3x3 +

1

2
x)·y ′−(x2 +

1

6
)·y ′′ = 0 .

∂res(A,B) = det

∂AA
B

 = det

 2 0 −x2 − 1
6

2x −x2 − 1
6 0

6x2 + 2 −3x3 − 1
2x −x2 − 1

6

 = 0 .

So A and B have a common factor on the right of positive order; in fact,
this factor is A, and B = (3x + ∂) · A.
This also means, that A and B (or their corresponding differential
equations) have a common root, namely η = 3x2 + 1

2 .



We close this subsection by stating an analogue of Proposition 2.4.
Theorem 3.10. Let A,B ∈ R[∂]. The resultant of A and B is
contained in (A,B), the ideal generated by A and B in R[∂].
Moreover, ∂res(A,B) can be written as a linear combination
∂res(A,B) = CA + DB, with order(C ) < order(B), and
order(D) < order(A).

Proof: Let S := ∂syl(A,B). Now proceed as in the proof of Proposition
2.4; only instead of multiplying the i-th column of S by xm+n−i , multiply
it by ∂m+n−i from the right and add to the last column. This will result
in a new matrix T , having the same determinant as S . The columns of
T are the same as the corresponding columns of S , except for the last
column, which consists of the operators

∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B .

Expanding the determinant of T w.r.t. its last column, we obtain
operators C and D s.t.

∂res(A,B) = CA + DB,

and order(C ) < order(B), order(D) < order(A).



From Theorem 3.10 we readily obtain an alternative proof that
∂res(A,B) = 0 is a necessary condition for the existence of a
non-trivial common root of A and B in an extension of K . The
details are left as an exercise for the reader.
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