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1 Introduction

This report summarises ongoing discussions of the authors on the topic of differential
resultants which have three goals in mind. First, we aim to try to understand existing
literature on the topic. Second, we wish to formulate some interesting questions and
research goals based on our understanding of the literature. Third, we would like to
advance the subject in one or more directions, by pursuing some of these questions and
research goals. Both authors have somewhat more background in nondifferential, as dis-
tinct from differential, computational algebra. For this reason, our approach to learning
about differential resultants has started with a careful review of the corresponding theory
of resultants in the purely algebraic (polynomial) case. We try, as far as possible, to adapt
and extend our knowledge of purely algebraic resultants to the differential case. Overall,
we have the hope of helping to clarify, unify and further develop the computational theory
of differential resultants.

There are interesting notions of a differential polynomial resultant in the literature.
At first glance it could appear that these notions differ in essential ways. For example,
Zwillinger [9] suggested that the concept of a differential resultant of a system of two
coupled algebraic ordinary differential equations (AODEs) for (y(x), z(x)) (where x is the
independent variable and y and z are the dependent variables) could be developed. Such
a differential resultant would be a single AODE for z(x) only. While that author sketches
how such differential elimination could work for a specific example, no general method is
presented. Chardin [3] presented an elegant treatment of resultants and subresultants of
(noncommutative) ordinary differential operators. Carra’-Ferro (see for example [1, 2])
published several works on differential resultants of various kinds, with firm algebraic
foundations, but the relations to Zwillinger’s suggested notion and Chardin’s theory might
not be immediately clear from glancing through these works.

In fact our study of the subject has revealed to us that the approaches of all three
authors mentioned above are intimately related. It would appear that the common source
for the essential basic notion of differential resultant can be traced to work of Ritt [8] in
the 1930s. After reviewing relevant background material on algebra, both classical and
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differential, in Section 2, we will present in Section 3 the simplest case of the differential
resultant originally proposed by Ritt: namely, that of two linear homogeneous ordinary
differential polynomials over a differential ring or field. Chardin’s theory is most closely
associated with this simple special case. In Section 4 we will review the algebraic theory of
the multipolynomial resultant of Macaulay. In Section 5, using the concepts and results of
Section 4, we extend the concept of Section 3 to that of two arbitrary ordinary differential
polynomials over a differential field or ring. This could be viewed as a simpler and more
streamlined account of Carra’-Ferro’s theory. We will see that this theory can be applied
to the problem of differential elimination, thereby providing a systematic treatment of
the approach suggested by Zwillinger. In Section 6 we survey briefly the work post that
of Carra’-Ferro, and in the final section we pose questions for investigation.
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2 Elementary background material

Let R be a commutative ring with identity element 1. In the first subsection we shall
review the definition of the classical Sylvester resultant res(f, g) of f(x), g(x) ∈ R[x].
We shall state the requirements on R so that res(f, g) = 0 is a necessary and sufficient
condition for the existence in some extension of R of a solution α to the system

f(x) = g(x) = 0 .

In the second subsection we review elementary differential algebra on R. In particular we
define the notion of a derivation on R, and introduce the ring of differential polynomials
over R. The elementary background concepts from this section will provide the foundation
for the theory of the differential Sylvester resultant, developed in the next section.

2.1 Sylvester resultant

In this subsection we review the basic theory of the Sylvester resultant for algebraic poly-
omials, with an emphasis on the necessary requirements for the underlying coefficient
domain. For convenience we assume at the outset that R is an integral domain (commu-
tative ring with 1, and no zero divisors), and that K is its quotient field. Some results
we will state require merely that R be a commutative ring with 1, and others require a
stronger hypothesis, as we shall remark.

Let

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j

be polynomials of positive degrees m and n, respectively, in R[x]. If f and g have a
common factor d(x) of positive degree, then they have a common root in the algebraic
closure K of K; so the system of equations

f(x) = g(x) = 0 (1)

has a solution in K.
On the other hand, if α ∈ K is a common root of f and g, then normK(α):K(x − α) is a
common divisor of f and g in K[x]. So, by Gauss’ Lemma (for which we need R to be
a unique factorization domain) on primitive polynomials there is a similar (only differing
by a factor in K) common factor of f and g in R[x]. We summarize these observations
as follows:

Proposition 2.1. Let R be a unique factorization domain (UFD) with quotient field K.
For polynomials f(x), g(x) ∈ R[x] the following are equivalent:

(i) f and g have a common solution in K, the algebraic closure of K,

(ii) f and g have a common factor of positive degree in R[x].

So now we want to determine a necessary condition for f and g to have a common
divisor of positive degree in R[x]. Suppose that f and g indeed have a common divisor
d(x) of positive degree in R[x]; i.e.,

f(x) = d(x)f(x), g(x) = d(x)g(x). (2)
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Then for p(x) := g(x), q(x) := −f(x) we have

p(x)f(x) + q(x)g(x) = 0. (3)

So there are non-zero polynomials p and q with deg p < deg g, deg q < deg f , satisfying
equation (3). This means that the linear system

(
pn−1 · · · p0 qm−1 · · · q0

)
·

A
· · ·
B

 = 0 , (4)

where

A =


am am−1 · · · a0

am am−1 · · · a0
. . . . . .

am am−1 · · · a0

 ∈ Rn
m+n ,

B =


bn bn−1 · · · b0

bn bn−1 · · · b0
. . . . . .

bn bn−1 · · · b0

 ∈ Rm
m+n ,

has a non-trivial solution. The matrix of this system (4) is called the Sylvester matrix of
f and g. Thus, the determinant of the Sylvester matrix of f and g is 0. The resultant of
f and g, res(f, g), is this determinant, and it is clear that the resultant is a polynomial
expression of the coefficients of f and g, and therefore an element of the integral domain
R. This does not require R to be a UFD. Summarizing:

Proposition 2.2. Let f, g ∈ R[x], for R an integral domain.
res(f, g) = 0 is a necessary condition for f and g to have a common factor of positive
degree.

If we identify a polynomial of degree d with the vector of its coefficients of length d+1,
we may also express this in terms of the linear map

S : Km+n −→ Km+n

(pn−1, . . . , p0, qm−1, . . . , q0) 7→ coefficients of pf + qg

Obviously the existence of a non-trivial linear combination (3) is equivalent to S having
a non-trivial kernel, and therefore to S having determinant 0.

But is the vanishing of the resultant also a sufficient condition for f and g to have a
common factor of positive degree? Suppose that res(f, g) = 0. This means that (3) has a
non-trivial solution u(x), v(x) of bounded degree; so

u(x)f(x) = −v(x)g(x) .

These co-factors will be in K[x], but of course we can clear denominators and have a
similar relation with co-factors in R[x]. If we now require the coefficient domain R to be a
unique factorization domain (UFD), we see that every irreducible factor of f must appear
on the right hand side with at least the same multiplicity. Not all of these factors can
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be subsumed in v, because v is of lower degree than f . So at least one of the irreducible
factors of f must divide g. Thus we have:

Proposition 2.3. Let f, g ∈ R[x], for R a UFD.
res(f, g) = 0 is also a sufficient condition for f and g to have a common factor of
positive degree; and therefore a common solution in K.

A further property is of interest and importance.

Proposition 2.4. The resultant is a constant in the ideal generated by f and g in R[x];
i.e. we can write

res(f, g) = u(x)f(x) + v(x)g(x), (5)

with u, v ∈ R[x]. Moreover, these cofactors satisfy the degree bounds deg(u) < deg(g),
deg(v) < deg(f).

Proof: We follow an argument given in [4]. In fact, Collins proves this fact for R being a
general commutative ring with 1.

Consider the Sylvester matrix S = (A
...B)T ; i.e. the (m+ n)× (m+ n) matrix, whose

first n rows consist of the coefficients of

xn−1 · f(x), . . . , x · f(x), f(x) ,

and whose last m rows consist of the coefficients of

xm−1 · g(x), . . . , x · g(x), g(x) .

Now, for 1 ≤ i < m + n, multiply the ith column of S by xm+n−i and add to the last
column. This will result in a new matrix T , having the same determinant as S. The
columns of T are the same as the corresponding columns of S, except for the last column,
which consists of the polynomials

xn−1 · f(x), . . . , x · f(x), f(x), xm−1 · g(x), . . . , x · g(x), g(x) .

Expanding the determinant of T w.r.t. its last column, we obtain polynomials u(x) and
v(x) satisfying the relation (5), and also the degree bounds.

An alternative approach (similar to that above but with a slightly different emphasis)
to defining the Sylvester resultant of f(x) and g(x) is to regard all the coefficients ai and
bj of f and g as distinct and unrelated indeterminates. The indeterminates am and bn are
then referred to as the formal leading coefficients of f and g, respectively. In effect we
take R to be the domain Z[am, . . . , a0, bn, . . . , b0]. This approach allows us to study the
resultant res(f, g) as a polynomial in the m+n+ 2 indeterminates ai and bj. Indeed it is
not hard to see that res(f, g) is homogeneous in the ai of degree n, homogeneous in the bj
of degree m, and has the “principal term” anmb

m
0 (from the principal diagonal). With this

approach, adjustment of some of the basic facts is needed. For example, the analogue of
Proposition 2.3 would state that, for D a UFD, after replacement of all the coefficients ai
and bj by elements of D, res(f, g) = 0 is a sufficient condition for either f(x) and g(x) to
have a common factor of positive degree, or am = bn = 0.

Another variation on defining the Sylvester resultant of two polynomials is to start
instead with two homogeneous polynomials F (x, y) =

∑m
i=0 aix

iym−i and G(x, y) =
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∑
j=0 bjx

jyn−j. Let us similarly regard the coefficients ai and bj as indeterminates. Then

the resultant of F and G is defined as res(F,G) = res(f, g), where f(x) = F (x, 1) and
g(x) = G(x, 1). Our analogue of Proposition 2.3 then becomes simpler. Combining it
with homogeneous analogues of Propositions 2.1 and 2.2 we have:

Proposition 2.5. After assigning values to the coefficients from a UFD D, res(F,G) = 0
is a necessary and sufficient condition for F (x, y) and G(x, y) to have a common factor of
positive degree over D, hence for a common zero to exist over an extension of the quotient
field of D.

2.2 Basic differential algebra

Let R be a commutative ring with 1. A derivation on R is a mapping ∂ : R → R such
that ∂(a + b) = ∂(a) + ∂(b) and ∂(ab) = ∂(a)b + a∂(b) for all a, b ∈ R. That ∂(0) = 0
and ∂(1) = 0 follow readily from these axioms. We sometimes denote the derivative of
a ∂(a) by a′. Such a ring (or integral domain or field) R together with a derivation on
R is called a differential ring (or integral domain or field, respectively). In such a ring R
elements r such that r′ = 0 are known as constants and the set C of constants comprises
a subring of R. If R is a field, C is a subfield of R. An ideal I of such a ring R is known
as a differential ideal if r ∈ I implies r′ ∈ I. If r1, . . . , rn ∈ R we denote by 〈r1, . . . , rn〉
the differential ideal generated by r1, . . . , rn, that is, the ideal generated by the ri and all
their derivatives.

Example 2.6. The familiar rings such as Z, Q, R and C are differential rings if we set
∂(a) = 0 for all elements a.

Example 2.7. Let K be a field and t an indeterminate over K. Then K[t], equipped
with the derivation ∂ = d/dt, is a differential integral domain and its quotient field K(t)
is a differential field, again with standard differentiation as its derivation. K is the ring
(field) of constants of K[t] (K(t)).

Example 2.8. Let (R, ∂) be a differential ring. Let x = x(0), x(1), x(2), . . . be distinct
indeterminates over R. Put ∂(x(i)) = x(i+1) for all i ≥ 0. Then ∂ can be extended to a
derivation on the polynomial ring R{x} := R[x(0), x(1), . . .] in a natural way, and we denote
this extension also by ∂. The ring R{x} together with this extended ∂ is a differential ring,
called the ring of differential polynomials in the differential indeterminate x over R. An
element f(x) =

∑m
i=0 aix

(i) of R{x} with am 6= 0 has order m and leading coefficient am.
(Remark. It may be helpful to think of elements of R and of x, x(1), . . . as functions of
an indeterminate t, and to regard ∂ as differentiation with respect to t.) If (K, ∂) is a
differential field then K{x} is a differential integral domain, and its derivation extends
uniquely to the quotient field. We write K〈x〉 for this quotient field; its elements are
differential rational functions of x over K.

Let (R, ∂) be a differential integral domain. An ultimate aim of this paper is to define
and study a certain resultant of two elements of the differential ring (indeed domain)
R{x} introduced above. In the next section, we shall consider a simple and important
R-submodule of R{x} (considered as left R-module), namely that which comprises those
elements of R{x} which are linear and homogeneous. For two such elements we will
introduce an analogue of the classical Sylvester resultant reviewed in Section 2.
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3 Differential Sylvester resultant

Let (R, ∂) be a differential integral domain. Recall from Section 2 that the ring (indeed
domain) of differential polynomials in the differential indeterminate x is denoted by R{x}.
Then R{x} is also a (left) R-module, and we denote by RLH{x} the R-submodule com-
prising those elements of R{x} which are linear and homogeneous. We aim in this section
to define a certain resultant, known as a differential Sylvester resultant, of two elements
of RLH{x}. We shall begin by studying a closely related noncommutative ring: namely,
we consider the ring R[∂] of linear differential operators on R. As we shall see, there is
an important relationship between R[∂], considered as left R-module, and RLH{x}: these
are isomorphic as left R-modules. Thus the differential theory of R[∂] and RLH{x} can to
an extent be developed in parallel. The details are provided in the next two subsections.

3.1 Resultant of two linear differential operators

This subsection follows the presentation of [3], and elaborates on a number of points from
that source. Let (R, ∂) be a differential integral domain. Recall that we sometimes denote
∂(a) by a′. Then K, the quotient field of R, is naturally equipped with an extension of
this derivation, which we will also denote by ∂ (and sometimes by ′).

We consider the ring of linear differential operators R[∂], where the application of
A =

∑m
i=0 ai∂

i to r ∈ R is defined as

A(r) =
m∑
i=0

air
(i) .

Here r(i) denotes the i-fold application of ∂ (that is, ′) to r. If am 6= 0, the order of A
is m and am is the leading coefficient of A. Now the application of A can naturally be
extended to K, and to any extension of K. If A(η) = 0, with η in R, K or any extension
of K, we call η a root of the linear differential operator A.

The application of the constant operator r to a yields r(a) = r · a(0) = r · a.
The ring R[∂] is non-commutative; let us see what the commutation rule is. If we

apply ∂r to a we get

∂r(a) = ∂(ra) = r∂(a) + (∂(r))a = r∂(a) + r′a = (r∂ + r′)(a).

So the corresponding rule for the multiplication of ∂ by an element of r ∈ R is

∂r = r∂ + r′ .

Note that ∂r, which denotes the operator product of ∂ and r, is distinct from ∂(r) (that
is, from r′), the application of map ∂ to r.

Proposition 3.1. For n ∈ N : ∂nr =
∑n

i=0

(
n
i

)
r(n−i)∂i .

Proof: For n = 0 this obviously holds.
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Assume the fact holds for some n ∈ N. Then

∂n+1r = ∂(∂nr) = ∂
(∑n

i=0

(
n
i

)
r(n−i)∂i

)
=

∑n
i=0

(
n
i

)
∂r(n−i)∂i =

∑n
i=0

(
n
i

)
[r(n−i)∂ + r(n−i+1)]∂i

=
∑n

i=0

(
n
i

)
r(n−i)∂i+1 +

∑n
i=0

(
n
i

)
r(n−i+1)∂i

=
∑n+1

i=1

(
n
i−1

)
r(n+1−i)∂i +

∑n
i=0

(
n
i

)
r(n−i+1)∂i

=
(
n
n

)
r(0)∂n+1 +

∑n
i=1[
(
n
i−1

)
+
(
n
i

)
]r(n+1−i)∂i +

(
n
0

)
r(n+1)∂0

=
∑n+1

i=0

(
n+1
i

)
r(n+1−i)∂i.

From a linear homogeneous ODE p(x) = 0, with p(x) ∈ R{x},

p(x) = p0(t)x+ p1(t)x
′ + · · ·+ pn(t)x(n) = 0 ,

we can extract a linear differential operator

O(p) = A =
n∑
i=0

pi∂
i ,

such that the given ODE can be written as

A(x) = 0,

in which x is regarded as an unknown element of R, K or some extension of K. Such
a linear homogeneous ODE always has the trivial solution x = 0; so a linear differential
operator always has the trivial root 0.

In [3] it is stated that K[∂] is left-Euclidean, and a few brief remarks are provided by
way of proof. Since the concept of a left-Euclidean ring is not as widely known as that of
Euclidean ring, it may be helpful to recall its definition here. A ring R is left-Euclidean
if there exists a function d : R − {0} → N such that for all A,B in R, with B 6= 0, there
exist Q and R in R such that A = QB +R, with d(R) < d(B) or R = 0. If one wishes to
provide a complete proof of the claim that K[∂] is left-Euclidean (in which we take d(A)
to be the order of A), Proposition 3.1 above is useful. For example, by way of proof hint,
Chardin claims that the operator A− (a/b)∂m−nB is of order less than m, where a and b
are the leading coefficients of A and B, respectively, and m and n are their orders, with
m ≥ n assumed. To show this claim, it suffices to show that the term (a/b)∂m−nB consists
of a∂m plus terms of order less than m. This follows by applications of Proposition 3.1,
putting n = m− n and r equal to each coeficient of operator B in turn.

It follows from the left-Euclidean property that every left-ideal KI of the form KI =
(A,B) is principle, and is generated by the right-gcd of A and B. As remarked in [3]
with reference to [5], under suitable assumptions on K, any linear differential operator of
positive order has a root in some extension of K. We state this result precisely.

Theorem 3.2. (Ritt-Kolchin). Assume that the differential field K has characteristic
0 and that its field C of constants is algebraically closed. Then, for any linear differential
operator A over K of positive order n, there exist n roots η1, . . . , ηn in a suitable extension
of K, such that the ηi are linearly independent over C. Moreover, the field K〈η1, . . . , ηn〉
contains no constant not in C.

This result is stated and proved in [7] using results from [6] and [8]. The field
K〈η1, . . . , ηn〉 associated with A is known as a Picard-Vessiot extension of K (for A).
Henceforth assume the hypotheses of Theorem 3.2.
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It follows from Theorem 3.2 that if the operators A,B ∈ K[∂] have a common factor
F of positive order on the right, i.e.,

A = A · F, and B = B · F, (6)

then they have a non-trivial common root in a suitable extension of K. For by Theorem
3.2, F has a root η 6= 0 in an extension of K. We have A(η) = Ā(F (η)) = Ā(0) = 0 and
similarly B(η) = 0.

On the other hand, if A and B have a non-trivial common root η in a suitable extension
of K, we show that they have a common right factor of positive order in K[∂]. Let F
be a nonzero differential operator of lowest order s.t. F (η) = 0. Then F has positive
order. Because the ring of operators is left-Euclidean, F is unique up to multiplication of
non-zero elements of K. This F is a right divisior of both A and B. To see this, apply
division in the left-Euclidean ring K[∂]:

A = Q · F +R,

with the order of R less than the order of F , or R = 0. Apply both sides of this equation
to η:

A(η) = (Q · F )(η) +R(η).

Since A(η) = 0 and F (η) = 0, R(η) = 0. Therefore, by minimality of F , R = 0. Hence F
is a right divisor of A. We see that F is a right divisor of B similarly. We summarize our
result in the following theorem, which is the closest analogue of Proposition 2.1 we can
state.

Theorem 3.3. Assume that K has characteristic 0 and that its field of constants is
algebraically closed. Let A,B be differential operators of positive orders in K[∂]. Then
the following are equivalent:

(i) A and B have a common non-trivial root in an extension of K,

(ii) A and B have a common factor of positive order on the right in K[∂].

Now let us see that the existence of a non-trivial factor (6) is equivalent to the existence
of a non-trivial order-bounded linear combination

CA+DB = 0 , (7)

with order(C) < order(B) and order(D) < order(A), and (C,D) 6= (0, 0).
For given A,B ∈ K[∂], with m = order(A), n = order(B), consider the linear map

S : Km+n −→ Km+n

(cn−1, . . . , c0, dm−1, . . . , d0) 7→ coefficients of CA+DB
(8)

Obviously the existence of a non-trivial linear combination (7) is equivalent to S having a
non-trivial kernel, and therefore to S having determinant 0. Indeed we have the following
result.

Theorem 3.4. det(S) = 0 if and only if A and B have a common factor (on the right)
in K[∂] of positive order.
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Proof: Suppose det(S) = 0. This means that S cannot be surjective. Now the right-gcd
G of A and B can be written as an order-bounded linear combination of A and B, so it
is in the image of the map S. This means that G cannot be trivial (that is, G cannot be
an element of K), because otherwise S would be surjective.

On the other hand, suppose that det(S) 6= 0. Then the linear map is invertible; in
particular, it is surjective. Therefore there exist C,D ∈ K[∂] with appropriate degree
bounds, s.t. 1 = CA + DB. So every common divisor (on the right) of A and B is a
common divisor of 1. Therefore no common divisor of A and B could have positive order.

So let us see which linear conditions on the coefficients of A and B we get by requiring
that (7) has a non-trivial solution of bounded order, i.e.,

order(C) < order(B) and order(D) < order(A).

Example 3.5. order(A) = 2 = order(B)

(c1∂ + c0)(a2∂
2 + a1∂ + a0) + (d1∂ + d0)(b2∂

2 + b1∂ + b0)

order 3:
c1∂a2∂

2 = c1(a2∂ + a′2)∂
2 = c1a2∂

3 + c1a
′
2∂

2

d1∂b2∂
2 = d1(b2∂ + b′2)∂

2 = d1b2∂
3 + d1b

′
2∂

2

order 2:
c1a

′
2∂

2 (from above) + c1∂a1∂ + c0a2∂
2 = c1a

′
2∂

2 + c1a1∂
2 + c0a2∂

2 + c1a
′
1∂

analogous for b and d

order 1:

c1a
′
1∂ (from above) + c1∂a0 + c0a1∂ = c1a

′
1∂ + c1(a0∂ + a′0) + c0a1∂ = c1a

′
1∂ + c1a0∂ + c0a1∂ + c1a

′
0

analogous for b and d

order 0:
c1a

′
0 (from above) + c0a0

analogous for b and d

So, finally,

(
c1 c0 d1 d0

)
·


a2 a1 + a′2 a0 + a′1 a′0
0 a2 a1 a0
b2 b1 + b′2 b0 + b′1 b′0
0 b2 b1 b0

 =
(
0 0 0 0

)
.

Observe, that the rows of this matrix consist of the coefficients of

∂A, A, ∂B, B .

Comparing this to the example in [3], p.3, we see that after interchanging of rows this is
the same matrix.
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Example 3.6. order(A) = 2, order(B) = 3

(c2∂ + c1∂ + c0)(a2∂
2 + a1∂ + a0) + (d1∂ + d0)(b3∂

3 + b2∂
2 + b1∂ + b0)

order 4:
c2∂

2a2∂
2 + d1∂b3∂

3 = 0

a2c2∂
4 + 2a′2c2∂

3 + a′′2c2∂
2 + b3d1∂

4 + b′3d1∂
3 = 0

order 3:

(2a′2c2∂
3 + a′′2c2∂

2 from above) + c2∂
2a1∂ + c1∂a2∂

2 + (b′3d1∂
3 from above) + d1∂b2∂

2 + d0b3∂
3 = 0

2a′2c2∂
3 + a1c2∂

3 + a2c1∂
3 + a′′2c2∂

2 + 2a′1c2∂
2 + a′′1c2∂ + b′3d1∂

3 + b2d1∂
3 + b3d0∂

3 + b′2d1∂
2 = 0

order 2:

(a′′2c2∂
2 + 2a′1c2∂

2 + a′′1c2∂ + a′2c1∂
2 from above) + c2∂

2a0 + c1∂a1∂ + c0a2∂
2

+(b′2d1∂
2 from above) + d1∂b1∂ + d0b2∂

2 = 0

a′′2c2∂
2 + 2a′1c2∂

2 + a′′1c2∂ + a′2c1∂
2 + a0c2∂

2 + 2a′0c2∂ + a′′0c2 + a1c1∂
2 + a′1c1∂ + a2c0∂

2

+b′2d1∂
2 + b1d1∂

2 + b′1d1∂ + b2d0∂
2 = 0

order 1:

(a′′1c2∂ + 2a′0c2∂ + a′′0c2 + a′1c1∂ from above) + c1∂a0 + c0a1∂ + (b′1d1∂ from above) + d1∂b0 + d0b1∂ = 0

a′′1c2∂ + 2a′0c2∂ + a′1c1∂ + a0c1∂ + a′0c1 + a1c0∂ + a′′0c2 + b′1d1∂ + b0d1∂ + b′0d1 + b1d0∂ = 0

order 0:
(a′0c1 + a′′0c2 from above) + a0c0 + (b′0d1 from above) + b0d0 = 0.

So, finally

(
c2 c1 c0 d1 d0

)
·


a2 a1 + 2a′2 a0 + 2a′1 + a′′2 2a′0 + a′′1 a′′0
0 a2 a1 + a′2 a0 + a′1 a′0
0 0 a2 a1 a0
b3 b2 + b′3 b1 + b′2 b0 + b′1 b′0
0 b3 b2 b1 b0

 =
(
0 · · · 0

)
.

Observe, that the rows of this matrix consist of the coefficients of

∂2A, ∂A, A, ∂B, B .

Theorem 3.7. The linear map S in (8) corresponding to (7) is given by the matrix whose
rows are ∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B.

Proof: Let v = (cn−1, . . . , c0, dm−1, . . . , d0).
Consider an index i between 1 and n. If cn−i = 1, and all the other components of v are
0, then v is mapped by S to ∂n−i ·A+ 0 ·B = ∂n−iA. So the i-th row of S has to consist
of the coefficients of ∂n−iA.
Consider an index j between 1 and m. If dm−j = 1, and all the other components of v
are 0, then v is mapped by S to 0 · A + ∂m−j · B = ∂m−jB. So the (n + j)-th row of S
has to consist of the coefficients of ∂m−jB.
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Definition 3.8. Let A,B be linear differential operators in R[∂] of order(A) = m, order(B) =
n, with m,n > 0.
By ∂syl(A,B) we denote the (differential) Sylvester matrix; i.e., the (m+ n)× (m+ n)-
matrix whose rows contain the coefficients of

∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B .

The (differential Sylvester) resultant of A and B, ∂res(A,B), is the determinant of
∂syl(A,B).

From Theorems 3.3 and 3.4 the following analogue of Propositions 2.2 and 2.3 is im-
mediate.

Theorem 3.9. Assume that K has characteristic 0 and that its field of constants is
algebraically closed. Let A,B be linear differential operators over R of positive orders.
Then the condition ∂res(A,B) = 0 is both necessary and sufficient for there to exist a
common non-trivial root of A and B in an extension of K.

We close this subsection by stating an analogue of Proposition 2.4.

Theorem 3.10. Let A,B ∈ R[∂]. The resultant of A and B is contained in (A,B), the
ideal generated by A and B in R[∂]. Moreover, ∂res(A,B) can be written as a linear com-
bination ∂res(A,B) = CA+DB, with order(C) < order(B), and order(D) < order(A).

Proof: Let S := ∂syl(A,B). Now proceed as in the proof of Proposition 2.4; only instead
of multiplying the i-th column of S by xm+n−i, multiply it by ∂m+n−i from the right and
add to the last column. This will result in a new matrix T , having the same determinant
as S. The columns of T are the same as the corresponding columns of S, except for the
last column, which consists of the operators

∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B .

Expanding the determinant of T w.r.t. its last column, we obtain operators C and D s.t.

∂res(A,B) = CA+DB,

and order(C) < order(B), order(D) < order(A).

From Theorem 3.10 we readily obtain an alternative proof that ∂res(A,B) = 0 is a
necessary condition for the existence of a non-trivial common root of A and B in an
extension of K. The details are left as an exercise for the reader.

3.2 Resultant of two linear homogeneous differential polynomials

The results for differential resultants which we have derived for linear differential opera-
tors can also be stated in terms of linear homogeneous differential polynomials. Such a
treatment facilitates the generalization to the non-linear algebraic differential case.

Let (R, ∂) be a differential domain with quotient field K. Then elements of R{x} can
be interpreted as algebraic ordinary differential equations (AODEs). For instance, the
differential polynomial

3x x(1) + 2t x(2) ∈ C(t){x}
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corresponds to the AODE
3x(t)x′(t) + 2tx′′(t) = 0 .

The next proposition says that linear differential operators correspond to linear homo-
geneous differential polynomials in a natural way. Recall that RLH{x} denotes the left
R-submodule of R{x} comprising those elements of R{x} which are linear and homoge-
neous.

Proposition 3.11. R[∂] and RLH{x} are isomporphic as left R-modules. K[∂] and
KLH{x} are isomporphic as left vector spaces over K.

Proof: Define P : R[∂] → RLH{x} as follows. Given A =
∑m

i=0 ai∂
i, let P(A) = f(x),

where f(x) =
∑m

i=0 aix
(i). (P stands for (linear homogeneous differential) polynomial.)

Then we can easily verify that P is an isomorphism of left R-modules. The inverse of P
is the mapping O : RLH{x} → R[∂], with O(f(x)) = A. (O stands for (linear differential)
operator.) Note that P has a natural extension, also denoted by P : K[∂] → KLH{x};
and likewise for O. The extended P is an isomorphism of vector spaces over K.

Definition 3.12. Let f(x) and g(x) be elements of RLH{x} of positive orders m and
n, respectively. Then the (differential) Sylvester matrix of f(x) and g(x), denoted by
∂syl(f, g), is ∂syl(A,B), where A = O(f) and B = O(g). The (differential Sylvester)
resultant of f(x) and g(x), denoted by ∂res(f, g), is ∂res(A,B).

We may observe that the m+ n rows of ∂syl(f, g) contain the coefficients of

f (n−1)(x), . . . , f (1)(x), f(x), g(m−1)(x), . . . , g(1)(x), g(x).

The following analogue and slight reformulation of Theorem 3.9 is immediate.

Theorem 3.13. Assume that K has characteristic 0 and that its field of constants is
algebraically closed. Let f(x), g(x) be linear homogeneous differential polynomials of pos-
itive orders over R. Then the condition ∂res(f, g) = 0 is both necessary and sufficient for
there to exist a common non-trivial solution of f(x) = 0 and g(x) = 0 in an extension of
K.

We have also an analogue and slight reformulation of Theorem 3.10:

Theorem 3.14. Let f(x), g(x) ∈ RLH{x}. Then x∂res(f, g) is contained in the differen-
tial ideal 〈f, g〉.

From the above theorem we readily obtain an alternative proof that ∂res(f, g) = 0 is
a necessary condition for the existence of a non-trivial common solution of f(x) = 0 and
g(x) = 0. The details are left to the reader.
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