Chapter 3
 Basic differential algebra

Franz Winkler

Computer Analysis, SS 2021

Throughout this chapter we assume that all domains have characteristic 0 .
3.1 Differential rings and fields

Definition 3.1.1: Let R be a commutative ring with unity 1 . A derivation' is a map from R to R such that for all $r, s \in R$ we have

$$
(r+s)^{\prime}=r^{\prime}+s^{\prime} \quad \text { and } \quad(r s)^{\prime}=r^{\prime} s+r s^{\prime}
$$

R together with its derivation is called a differential ring.
The second equation is called the "Leibnitz rule".
Observe: $1^{\prime}=(1 \cdot 1)^{\prime}=1^{\prime}+1^{\prime}$, so $0=1^{\prime}$

Lemma 3.1.2: Let the differential ring R be an integral domain. Then the derivation' extends uniquely to the quotient field of R.

Proof: Suppose we can extend the derivation ' to K. Take a non-zero $a \neq 0$; then

$$
\begin{gathered}
0=1^{\prime}=\left(a \cdot a^{-1}\right)^{\prime}=a \cdot\left(a^{-1}\right)^{\prime}+a^{\prime} \cdot a^{-1} \\
\text { so } \quad\left(a^{-1}\right)^{\prime}=\frac{-a^{\prime}}{a^{2}} .
\end{gathered}
$$

This implies that for $b \neq 0$,

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{\prime}=\frac{b a^{\prime}-a b^{\prime}}{b^{2}} . \tag{*}
\end{equation*}
$$

In fact, (*) defines a derivation on $K . \square$

Definition 3.1.3: Let R be a differential ring.
(a) Since $1^{\prime}=\left(1^{2}\right)^{\prime}=2 \cdot 1 \cdot 1^{\prime}, 1^{\prime}=0$. Also $0^{\prime}=0$. Thus the set $C_{R}=\left\{c \mid c \in R, c^{\prime}=0\right\}$ forms a subring with unity of R, the ring of constants of R.
(b) If the differential ring R is actually a field, then R is called a differential field. In this case C_{R} is a subfield of R, the field of constants.

Remark 3.1.4: If n is a positive integer, we can prove by induction that

$$
\left(a^{n}\right)^{\prime}=n \cdot a^{n-1} \cdot a^{\prime}
$$

From the proof of Lemma 3.1.2 we conclude that this property holds for all integers n.

Example 3.1.5: Consider the field M of meromorphic functions on \mathbb{C}; i.e., functions which are analytic everywhere except at possibly finitely many isolated singularities which must be poles (limit $\pm \infty)$.
C_{M} is obviously \mathbb{C}; but we will be interested in differential subfields of M with possibly smaller fields of constants.
(a) \mathbb{Q} : this is the smallest subfield of M. The only derivation on \mathbb{Q} is the trivial one, with $a^{\prime}=0$ for all $a \in \mathbb{Q}$. So $C_{\mathbb{Q}}=\mathbb{Q}$.
(b) $\mathbb{Q}(x)$: the field of rational functions in x with $^{\prime}=d / d x$ is a differential field. The derivative of x is 1 , but we would also get a differential field by setting $x^{\prime}=2$.
(c) $\mathbb{Q}(x, \exp (x)): \exp (x)$ is transcendental over $\mathbb{Q}(x)$. Notice that this field also contains $\cosh (x)=(\exp (x)+1 / \exp (x)) / 2$. Antiderivatives may lie outside the field. But something more problematic may happen. E.g., $\int(\exp (x) / x d x$ cannot be written even as a "closed form expression", i.e., cannot be found in a Liouville extension of the field.

Now let us consider extensions of a differential field, both algebraic and transcendental.

Theorem 3.1.6: Let K be a differential field and $K(\vartheta)$ an algebraic extension of K. Then the derivative' of K extends uniquely to a derivation on $K(\vartheta)$.

Proof: Let $m(x) \in K[x]$ be the minimal polynomial of ϑ; i.e., $m(x)$ is irreducible and $m(\vartheta)=0$. So

$$
m(\vartheta)=m_{n} \vartheta^{n}+\cdots+m_{0}=0, \text { with } m_{n} \neq 0
$$

Consequently also $m(\vartheta)^{\prime}=0$; i.e.,

$$
\begin{aligned}
m(\vartheta)^{\prime} & =\sum_{i=1}^{n}\left(m_{i}^{\prime} \vartheta^{i}+i \cdot m_{i} \vartheta^{i-1} \vartheta^{\prime}\right)+m_{0}^{\prime} \\
& =\vartheta^{\prime}\left(\sum_{i=1}^{n} i \cdot m_{i} \vartheta^{i-1}\right)+\sum_{i=0}^{n} m_{i}^{\prime} \vartheta^{i} \\
& =0 .
\end{aligned}
$$

So we get

$$
\vartheta^{\prime}=\frac{-\sum_{i=0}^{n} m_{i}^{\prime} \vartheta^{i}}{\sum_{i=1}^{n} i \cdot m_{i} \vartheta^{i-1}} .
$$

The denominator is non-zero, because m is minimal for ϑ.

An algebraic extension of the differential field K might contain new constants. For example, $\mathbb{Q}(x)(y)$ with $y^{4}-2 x^{2}=0$ contains $\sqrt{2}$ (and $-\sqrt{2}$), since for $t=y^{2} / x$ we have $t^{2}=2$.

Theorem 3.1.7: Let K be a differential field and $K(\vartheta)$ a transcendental extension of K. Then $\vartheta^{\prime}=\eta$ induces a derivation on $K(\vartheta)$ for any $\eta \in K(\vartheta)$.

Proof: Let $a(\vartheta)=a_{n} \vartheta^{n}+\cdots+a_{0}$ be an arbitrary element of $K[\vartheta]$. Define

$$
a(\vartheta)^{\prime}:=a_{n}^{\prime} \vartheta^{n}+\sum_{i=1}^{n}\left(a_{i-1}^{\prime}+i \cdot a_{i} \eta\right) \vartheta^{i-1}
$$

Then ' is a derivation on the ring $K[\vartheta]$. Since $K(\vartheta)$ is the quotient field of $K[\vartheta]$, Lemma 3.1.2 yields the result.

Example 3.1.5 (cont.): Both (b) and (c) are applications of Theorem 3.1.7. In (b) we extend by a transcendental element, $\vartheta=x$, and we choose $\eta=1$. In (c) we extend by a transcendental element, $\vartheta=\exp (x)$, and we choose $\eta=\vartheta$.

Whenever we write $K \subseteq L$ for two differential fields we shall mean K to be a differential subfield of L.

Theorem 3.1.8: Let $K \subseteq L$ be differential fields and let $\vartheta \in L$ such that $\vartheta^{\prime} \in K$. If there is no element η in K s.t. $\vartheta^{\prime}=\eta^{\prime}$, then ϑ is transcendental over K and for the fields of constants we have $C_{K(\vartheta)}=C_{K}$.

Proof: Suppose ϑ is algebraic over K; i.e., there exists a monic irreducible polynomial (the minimal polynomial)

$$
m(x)=x^{n}+m_{n-1} x^{n-1}+\cdots+m_{0} \in K[x]
$$

s.t. $m(\vartheta)=0$. Therefore

$$
m(\vartheta)^{\prime}=\left(n \vartheta^{\prime}+m_{n-1}^{\prime}\right) \vartheta^{n-1}+\cdots=0 .
$$

Since $m(x)$ is minimal, $n \vartheta^{\prime}+m_{n-1}^{\prime}=0$, or $\vartheta^{\prime}=-m_{n-1}^{\prime} / n \in K$, contradicting our assumption.

Now we prove that $K(\vartheta)$ contains no new constants. First, assume

$$
c=c_{n} \vartheta^{n}+\cdots+c_{0} \in K[\vartheta], \quad n>0 \text { and } c_{n} \neq 0
$$

is a new constant; i.e.,

$$
c^{\prime}=c_{n}^{\prime} \vartheta^{n}+\left(n c_{n} \vartheta^{\prime}+c_{n-1}^{\prime}\right) \vartheta^{n-1}+\cdots=0
$$

Since ϑ is transcendental, $c_{n}^{\prime}=0=n c_{n} \vartheta^{\prime}+c_{n-1}^{\prime}$, hence

$$
\vartheta^{\prime}=\frac{-c_{n-1}^{\prime}}{n c_{n}}=\frac{-n c_{n} c_{n-1}^{\prime}+c_{n-1} n c_{n}^{\prime}}{n^{2} c_{n}^{2}}=\left(\frac{-c_{n-1}}{n c_{n}}\right)^{\prime}
$$

But this contradicts our assumption.
Finally, suppose $f(\vartheta) / g(\vartheta)$ is a new constant, where $f, g \in K[\vartheta]$, $\operatorname{deg}(g) \geq 1$, and $\operatorname{gcd}(f, g)=1, g$ monic. Then we have

$$
\left(\frac{f(\vartheta)}{g(\vartheta)}\right)^{\prime}=\frac{f(\vartheta)^{\prime} g(\vartheta)-f(\vartheta) g(\vartheta)^{\prime}}{g(\vartheta)^{2}}=0
$$

and therefore $f(\vartheta) / g(\vartheta)=f(\vartheta)^{\prime} / g(\vartheta)^{\prime}$. But $\left.\operatorname{deg}\left(g(\vartheta)^{\prime}\right)<\operatorname{deg}(\vartheta)\right)$, which is impossible since f / g is in reduced form.

Remark 3.1.9: Using this theorem we see that the logarithmic part of the integral of a rational function is transcendental.

Definition 3.1.10: differential field extension $K \subset L ; \vartheta \in L \backslash K$.
(a) If there exists an $\eta \in K$ s.t. $\vartheta^{\prime}=\eta$ we call the extension $K(\vartheta)$ an extension of K by an integral, and we call ϑ primitive over K. We write $\vartheta=\int \eta$.
(b) If $\vartheta^{\prime}=\frac{\eta^{\prime}}{\eta}$ for some $\eta \in K \backslash\{0\}$, then we call $K(\vartheta)$ an extension of K by a logarithm and write $\vartheta=\log \eta$. Obviously, extensions by logarithms are extensions by integrals.
(c) If $\frac{\vartheta^{\prime}}{\vartheta}=\eta$ for some $\eta \in K$, we call $K(\vartheta)$ an extension of K by an exponential of an integral. We write $\vartheta=\exp \left(\int \eta\right)$.
(d) If $\frac{\vartheta^{\prime}}{\vartheta}=\eta^{\prime}$ for some $\eta \in K$, we call $K(\vartheta)$ an extension of K by an exponential and we write $\vartheta=\exp \eta$. Obviously, extensions by exponentials are extensions by exponentials of integrals.
(e) ϑ is elementary over K if
$-\vartheta$ is algebraic over K, or
$-\vartheta=\log \eta$ for some $\eta \in K$, or
$-\vartheta=\exp \eta$ for some $\eta \in K$.
(f) ϑ is an (elementary) monomial over K if $\vartheta=\log \eta$ or $\vartheta=\exp \eta$ for some $\eta \in K$ and ϑ is transcendental over K with $C_{K(\vartheta)}=C_{K}$.

Definition 3.1.11: Let $K \subseteq L$ be a differential field extension. L is an elementary extension or Liouville extension of K if there are $\vartheta_{1}, \ldots, \vartheta_{n}$ in L s.t. $L=K\left(\vartheta_{1}, \ldots, \vartheta_{n}\right)$ and ϑ_{i} is elementary over $K\left(\vartheta_{1}, \ldots, \vartheta_{i-1}\right)$ for $1 \leq i \leq n$.
L is a regular elementary extension of K if L is an elementary extension of K, and all the intermediate transcendental extensions are extensions by elementary monomials.
We say that $f \in K$ has an elementary integral over K if there exists an elementary extension E of K and $g \in E$ s.t. $g^{\prime}=f$. An elementary function is an element of an elementary extension of $(\mathbb{C}, d / d x)$.

Example 3.1.12: We shall take the liberty of nesting extensions by simply listing them, so for example

$$
K\left(\exp \eta_{1}, \log \eta_{2}\right)=\left(K\left(\exp \eta_{1}\right)\right)\left(\log \eta_{2}\right) .
$$

(a) $\mathbb{Q}\left(x, \exp (x), \log (\exp (x)+1), \exp (x)^{2 / 3}\right)$ is a regular elementary extension of $\mathbb{Q}(x)$. But we cannot prove this here.
(b) $\mathbb{Q}(x, \exp (x), \exp (2 x+1))$ is an elementary extension of $\mathbb{Q}(x)$. But it is not regular, since

$$
\exp (2 x+1) / \exp (x)^{2}=\exp (1)
$$

and thus a new transcendental constant is introduced.
(c) $\mathbb{Q}(x, \log (x), \exp (\log (x) / 3))$ is not an extension by a monomial of $\mathbb{Q}(x, \log (x))$, because

$$
\exp (\log (x) / 3)=x^{1 / 3}
$$

is algebraic over this field.

Without proof we quote the strong version of Liouville's Theorem on integration. This theorem can be found in [Bro97] as Theorem 5.5.3, where it is fully proved.

Theorem 3.1.13 (Liouville's Theorem - strong version): Let K be a differential field, C the field of constants of K, and $f \in K$. If there exists an elementary extension E of K and $g \in E$ s.t. $g^{\prime}=f$, then there are $v \in K, c_{1}, \ldots, c_{n} \in \bar{C}$, and $u_{1}, \ldots, u_{n} \in K\left(c_{1}, \ldots, c_{n}\right)^{*}$ such that

$$
f=v^{\prime}+\sum_{i=1}^{n} c_{i} \frac{u_{i}^{\prime}}{u_{i}}
$$

So if f has an elementary integral over K, then $\int f$ is something in K plus a sum of logarithms.
3.2 Differential polynomials

The following definitions and facts can be found in Chapter 1 of [Ritt50].

Definition 3.2.1: Let $\left(R,{ }^{\prime}\right)$ be a differential ring. Consider the polynomial ring in infinitely many variables

$$
R\{y\}=R\left[y^{(0)}, y^{(1)}, y^{(2)}, \ldots\right]=R\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]
$$

The derivation ' on R can be extended to the following derivation δ on $R\{y\}$:

$$
\delta\left(\sum_{i} a_{i} y^{(i)}\right)=\sum_{i}\left(a_{i}^{\prime} y^{(i)}+a_{i} y^{(i+1)}\right)
$$

So $(R\{y\}, \delta)$ is a differential ring, the ring of differential polynomials over R. We call y a differential variable. Often we also write ' for δ.

Similarly, this construction can be extended to several indeterminates. In this case there may be several derivations. The differential ring is called ordinary if it is equipped with only one derivation.

Definition 3.2.2: Let (R, δ) be an ordinary differential ring. An ideal I of R is called a differential ideal iff I is closed under the derivation δ; i.e., for all $a \in I$ we have $\delta(a) \in I$.
Let B be a set of differential polynomials in R. The differential ideal generated by B, denoted by $[B]$, is the ideal generated by all elements in B and their derivatives. The radical differential ideal generated by B, denoted by $\{B\}$, is the radical of $[B]$.

Example 3.2.3: Consider the differential ring $R=\mathbb{Q}[x]$ with the usual derivation ${ }^{\prime}$. Then the ring of differential polynomials in y over R contains, for example, the differential polynomials

$$
p(y)=3 x y^{\prime \prime \prime}-\left(2 x^{2}+5\right) y^{\prime}-7, \quad q(y)=\left(2 x^{3}+x-1\right) y^{\prime \prime}+3 x^{2} y .
$$

The derivation of p is

$$
p^{\prime}(y)=3 x y^{(4)}+3 y^{\prime \prime \prime}-\left(2 x^{2}+5\right) y^{\prime \prime}-4 x y^{\prime} .
$$

Observe that $R\{y\}$ is a non-Noetherian ring. The ideal

$$
<y, y^{\prime}, y^{\prime \prime}, \ldots>
$$

does not have a finite basis. But as a differential ideal $\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ it has a finite basis, namely it can be written as $[y]$.

Definition 3.2.4: Let I be a differential ideal in the differential ring $R=(K\{y\}, \delta)$, where K is a differential field. Let L be a differential extension field of K. An element $\xi \in L$ is called a zero of I iff for all $p(y) \in I$ we have $p(\xi)=0$.
The defining differential ideal of ξ in R is $\{p(y) \in R \mid p(\xi)=0\}$. A point $\xi \in L$ is called a generic zero of I iff I is the defining differential ideal of ξ in R.

Remark 3.2.5: In commutative algebra every prime ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ has a generic zero in a suitable extension of K. Similarly in differential algebra every prime differential ideal has a generic zero in a suitable differential extension of K. For example, the prime differential ideal generated by

$$
y^{\prime 2}+3 y^{\prime}-2 y-3 x \in \mathbb{Q}(x)\{y\}
$$

has the generic zero $\left((x+c)^{2}+3 c\right) / 2$, where c is a transcendental constant. The corresponding differential equation

$$
y^{\prime 2}+3 y^{\prime}-2 y-3 x=0
$$

has the general solution $y(x)=\left((x+c)^{2}+3 c\right) / 2$.
3.3 Linear differential operators

Definition 3.3.1: Let (R, δ) be a differential integral domain; δ is also written as '. We consider the non-commutative ring of linear differential operators $R[\partial]$, where the rule for the multiplication of ∂ by an element of $r \in R$ is

$$
\partial r=r \partial+r^{\prime}
$$

The application of an operator $A=\sum_{i=0}^{m} a_{i} \partial^{i}$ to an element of the differential ring $r \in R$ is defined as

$$
A(r)=\sum_{i=0}^{m} a_{i} r^{(i)}
$$

Here $r^{(i)}$ denotes the i-fold application of ${ }^{\prime}$ to r.
If $a_{m} \neq 0$, the order of A is m and a_{m} is the leading coefficient of A.

The application of A can naturally be extended to the quotient field K of R, and to any field extension of K. If $A(\eta)=0$, with η in R, K or any extension of K, we call η a root of the linear differential operator A.

Note that ∂r, which denotes the operator product of ∂ and r, is distinct from $\partial(r)$, the application ∂ to r, namely r^{\prime}. The application of an operator a of order 0 , i.e. an element a of R considered as an operator, to $r \in R$ is $a(r)=a \cdot r$.

Proposition 3.3.1. For $n \in N: \partial^{n} r=\sum_{i=0}^{n}\binom{n}{i} r^{(n-i)} \partial^{i}$.

Proof: For $n=0$ this obviously holds.
Assume the fact holds for some $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& \partial^{n+1} r \\
= & \partial\left(\partial^{n} r\right)=\partial\left(\sum_{i=0}^{n}\binom{n}{i} r^{(n-i)} \partial^{i}\right) \\
= & \sum_{i=0}^{n}\binom{n}{i} \partial r^{(n-i)} \partial^{i}=\sum_{i=0}^{n}\binom{n}{i}\left[r^{(n-i)} \partial+r^{(n-i+1)}\right] \partial^{i} \\
= & \sum_{i=0}^{n}\binom{n}{i} r^{(n-i)} \partial^{i+1}+\sum_{i=0}^{n}\binom{n}{i} r^{(n-i+1)} \partial^{i} \\
= & \sum_{i=1}^{n+1}\binom{n}{i-1} r^{(n+1-i)} \partial^{i}+\sum_{i=0}^{n}\binom{n}{i} r^{(n-i+1)} \partial^{i} \\
= & \binom{n}{n} r^{(0)} \partial^{n+1}+\sum_{i=1}^{n}\left[\binom{n}{i-1}+\left(\begin{array}{c}
n \\
i \\
i
\end{array}\right)\right] r^{(n+1-i)} \partial^{i}+\binom{n}{0} r^{(n+1)} \partial^{0} \\
= & \sum_{i=0}^{n+1}\binom{n+1}{i} r^{(n+1-i)} \partial^{i} .
\end{aligned}
$$

From a linear homogeneous ODE $f(y)=0$, with $f(y) \in R\{y\}$, we can extract a linear differential operator $A=\mathcal{O}(f)$ such that the given ODE can be written as

$$
A(y)=0,
$$

in which y is regarded as an unknown element of R, K or some extension of K. Such a linear homogeneous ODE always has the trivial solution $y=0$; so a linear differential operator always has the trivial root 0 .
In [Chardin:91] it is stated that $K[\partial]$ is left-Euclidean, and a few brief remarks are provided by way of proof.

Since the concept of a left-Euclidean ring is not as widely known as that of Euclidean ring, it may be helpful to recall its definition here.

Definition 3.3.2. A (potentially non-commutative) ring R is left-Euclidean if there exists a function $d: R^{*} \rightarrow \mathbb{N}$ such that for all a, b in R, with $b \neq 0$, there exist q and r in R such that $a=q b+r$, with $d(r)<d(b)$ or $r=0$.

It follows from the left-Euclidean property that every left-ideal ${ }_{K} l$ of the form ${ }_{k} I=(A, B)$ is principle, and is generated by the right-gcd of A and B. As remarked in [Chardin:91], any linear differential operator of positive order has a root in some extension of K. We state this result precisely.

Theorem 3.3.3. (Ritt-Kolchin). Assume that the differential field K has characteristic 0 and that its field C of constants is algebraically closed. Then, for any linear differential operator A over K of positive order n, there exist n roots $\eta_{1}, \ldots, \eta_{n}$ in a suitable extension of K, such that the η_{i} are linearly independent over C. Moreover, the field $K\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle$ contains no constant not in C.

This result is stated and proved in [Kolchin:48b] using results from [Kolchin:48a] and [Ritt:32]. The field $K\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle$ associated with A is known as a Picard-Vessiot extension of K (for A). Henceforth assume the hypotheses of Theorem 3.3.3.

It follows from Theorem 3.3.3 that if the operators $A, B \in K[\partial]$ have a common factor F of positive order on the right, i.e.,

$$
\begin{equation*}
A=\bar{A} \cdot F, \quad \text { and } B=\bar{B} \cdot F \tag{3.1}
\end{equation*}
$$

then they have a non-trivial common root in a suitable extension of K. For by Theorem 3.3.3 F has a root $\eta \neq 0$ in an extension of K. We have $A(\eta)=\bar{A}(F(\eta))=\bar{A}(0)=0$ and similarly $B(\eta)=0$.

On the other hand, if A and B have a non-trivial common root η in a suitable extension of K, we show that they have a common right factor of positive order in $K[\partial]$. Let F be a nonzero differential operator of lowest order s.t. $F(\eta)=0$. Then F has positive order. Because the ring of operators is left-Euclidean, F is unique up to multiplication of non-zero elements of K. This F is a right divisior of both A and B. To see this, apply division in the left-Euclidean ring $K[\partial]$:

$$
A=Q \cdot F+R
$$

with the order of R less than the order of F, or $R=0$. Apply both sides of this equation to η :

$$
A(\eta)=(Q \cdot F)(\eta)+R(\eta)
$$

Since $A(\eta)=0$ and $F(\eta)=0, R(\eta)=0$. Therefore, by minimality of $F, R=0$. Hence F is a right divisor of A. We see that F is a right divisor of B similarly. We summarize our result in the following theorem.

Theorem 3.3.4. Assume that K has characteristic 0 and that its field of constants is algebraically closed. Let A, B be differential operators of positive orders in $K[\partial]$. Then the following are equivalent:
(i) A and B have a common non-trivial root in an extension of K,
(ii) A and B have a common factor of positive order on the right in $K[\partial]$.

In the following chapter we will investigate the existence of a non-trivial factor, and we will see that (3.1) is equivalent to the existence of a non-trivial order-bounded linear combination

$$
\begin{equation*}
C A+D B=0 \tag{3.2}
\end{equation*}
$$

with $\operatorname{order}(C)<\operatorname{order}(B)$ and $\operatorname{order}(D)<\operatorname{order}(A)$, and $(C, D) \neq(0,0)$.
This will lead to the concept of a differential resultant.

References

[Chardin:91] Chardin, M., Differential resultants and subresultants. In Proc. Fundamentals of Computation Theory 1991, LNCS Vol. 529, Springer-Verlag, 1991.
[Kolchin:48a] Kolchin, E.R., Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ODEs. Ann. of Math. 49, 1-42, 1948.
[Kolchin:48b] Kolchin, E.R., Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ODEs. Bull. Amer. Math. Soc. 54, 927-932, 1948.
[Ritt:32] Ritt, J. F., Differential Equations from the Algebraic Standpoint. AMS Coll. Publ. Vol. 14, New York, 1932.

Thank you for your attention!

