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Throughout this chapter we assume that all domains have
characteristic 0.

3.1 Differential rings and fields

Definition 3.1.1: Let R be a commutative ring with unity 1.
A derivation ′ is a map from R to R such that for all r , s ∈ R we
have

(r + s)′ = r ′ + s ′ and (rs)′ = r ′s + rs ′ .

R together with its derivation is called a differential ring.

The second equation is called the ”Leibnitz rule”.
Observe: 1′ = (1 · 1)′ = 1′ + 1′, so 0 = 1′



Lemma 3.1.2: Let the differential ring R be an integral domain.
Then the derivation ′ extends uniquely to the quotient field of R.

Proof: Suppose we can extend the derivation ′ to K . Take a
non-zero a 6= 0; then

0 = 1′ = (a · a−1)′ = a · (a−1)′ + a′ · a−1 ,

so (a−1)′ =
−a′

a2
.

This implies that for b 6= 0,

(a
b

)′
=

ba′ − ab′

b2
. (∗)

In fact, (∗) defines a derivation on K . �



Definition 3.1.3: Let R be a differential ring.

(a) Since 1′ = (12)′ = 2 · 1 · 1′, 1′ = 0. Also 0′ = 0. Thus the set
CR = {c |c ∈ R, c ′ = 0} forms a subring with unity of R, the
ring of constants of R.

(b) If the differential ring R is actually a field, then R is called a
differential field. In this case CR is a subfield of R, the field of
constants.



Remark 3.1.4: If n is a positive integer, we can prove by
induction that

(an)′ = n · an−1 · a′ .

From the proof of Lemma 3.1.2 we conclude that this property
holds for all integers n.



Example 3.1.5: Consider the field M of meromorphic functions on
C; i.e., functions which are analytic everywhere except at possibly
finitely many isolated singularities which must be poles (limit
±∞).
CM is obviously C; but we will be interested in differential subfields
of M with possibly smaller fields of constants.

(a) Q: this is the smallest subfield of M. The only derivation on
Q is the trivial one, with a′ = 0 for all a ∈ Q. So CQ = Q.

(b) Q(x): the field of rational functions in x with ′ = d/dx is a
differential field. The derivative of x is 1, but we would also
get a differential field by setting x ′ = 2.

(c) Q(x , exp(x)): exp(x) is transcendental over Q(x). Notice
that this field also contains cosh(x) = (exp(x) + 1/exp(x))/2.
Antiderivatives may lie outside the field. But something more
problematic may happen. E.g.,

∫
(exp(x)/xdx cannot be

written even as a “closed form expression”, i.e., cannot be
found in a Liouville extension of the field.



Now let us consider extensions of a differential field, both algebraic
and transcendental.

Theorem 3.1.6: Let K be a differential field and K (ϑ) an
algebraic extension of K. Then the derivative ′ of K extends
uniquely to a derivation on K (ϑ).

Proof: Let m(x) ∈ K [x ] be the minimal polynomial of ϑ; i.e., m(x)
is irreducible and m(ϑ) = 0. So

m(ϑ) = mnϑ
n + · · ·+ m0 = 0 ,with mn 6= 0 .

Consequently also m(ϑ)′ = 0; i.e.,

m(ϑ)′ =
∑n

i=1(m′iϑ
i + i ·miϑ

i−1ϑ′) + m′0
= ϑ′(

∑n
i=1 i ·miϑ

i−1) +
∑n

i=0m
′
iϑ

i

= 0 .

So we get

ϑ′ =
−
∑n

i=0m
′
iϑ

i∑n
i=1 i ·miϑi−1

.

The denominator is non-zero, because m is minimal for ϑ.



An algebraic extension of the differential field K might contain new
constants. For example, Q(x)(y) with y4 − 2x2 = 0 contains

√
2

(and −
√

2), since for t = y2/x we have t2 = 2.



Theorem 3.1.7: Let K be a differential field and K (ϑ) a
transcendental extension of K. Then ϑ′ = η induces a derivation
on K (ϑ) for any η ∈ K (ϑ).

Proof: Let a(ϑ) = anϑ
n + · · ·+ a0 be an arbitrary element of K [ϑ].

Define

a(ϑ)′ := a′nϑ
n +

n∑
i=1

(a′i−1 + i · aiη)ϑi−1 .

Then ′ is a derivation on the ring K [ϑ]. Since K (ϑ) is the quotient
field of K [ϑ], Lemma 3.1.2 yields the result.



Example 3.1.5 (cont.): Both (b) and (c) are applications of
Theorem 3.1.7. In (b) we extend by a transcendental element,
ϑ = x , and we choose η = 1. In (c) we extend by a transcendental
element, ϑ = exp(x), and we choose η = ϑ.



Whenever we write K ⊆ L for two differential fields we shall mean
K to be a differential subfield of L.

Theorem 3.1.8: Let K ⊆ L be differential fields and let ϑ ∈ L
such that ϑ′ ∈ K. If there is no element η in K s.t. ϑ′ = η′, then ϑ
is transcendental over K and for the fields of constants we have
CK(ϑ) = CK .



Proof: Suppose ϑ is algebraic over K ; i.e., there exists a monic
irreducible polynomial (the minimal polynomial)

m(x) = xn + mn−1x
n−1 + · · ·+ m0 ∈ K [x ]

s.t. m(ϑ) = 0. Therefore

m(ϑ)′ = (nϑ′ + m′n−1)ϑn−1 + · · · = 0 .

Since m(x) is minimal, nϑ′ + m′n−1 = 0, or ϑ′ = −m′n−1/n ∈ K ,
contradicting our assumption.



Now we prove that K (ϑ) contains no new constants. First, assume

c = cnϑ
n + · · ·+ c0 ∈ K [ϑ], n > 0 and cn 6= 0

is a new constant; i.e.,

c ′ = c ′nϑ
n + (ncnϑ

′ + c ′n−1)ϑn−1 + · · · = 0 .

Since ϑ is transcendental, c ′n = 0 = ncnϑ
′ + c ′n−1, hence

ϑ′ =
−c ′n−1
ncn

=
−ncnc ′n−1 + cn−1nc

′
n

n2c2n
=
(−cn−1

ncn

)′
.

But this contradicts our assumption.
Finally, suppose f (ϑ)/g(ϑ) is a new constant, where f , g ∈ K [ϑ],
deg(g) ≥ 1, and gcd(f , g) = 1, g monic. Then we have( f (ϑ)

g(ϑ)

)′
=

f (ϑ)′g(ϑ)− f (ϑ)g(ϑ)′

g(ϑ)2
= 0 ,

and therefore f (ϑ)/g(ϑ) = f (ϑ)′/g(ϑ)′. But
deg(g(ϑ)′) < deg(ϑ)), which is impossible since f /g is in reduced
form.



Remark 3.1.9: Using this theorem we see that the logarithmic
part of the integral of a rational function is transcendental.



Definition 3.1.10: differential field extension K ⊂ L; ϑ ∈ L \ K .

(a) If there exists an η ∈ K s.t. ϑ′ = η we call the extension K (ϑ)
an extension of K by an integral, and we call ϑ primitive over
K . We write ϑ =

∫
η.

(b) If ϑ′ = η′

η for some η ∈ K \ {0}, then we call K (ϑ) an
extension of K by a logarithm and write ϑ = logη. Obviously,
extensions by logarithms are extensions by integrals.

(c) If ϑ′

ϑ = η for some η ∈ K , we call K (ϑ) an extension of K by
an exponential of an integral. We write ϑ = exp(

∫
η).

(d) If ϑ′

ϑ = η′ for some η ∈ K , we call K (ϑ) an extension of K by
an exponential and we write ϑ = expη. Obviously, extensions
by exponentials are extensions by exponentials of integrals.

(e) ϑ is elementary over K if
– ϑ is algebraic over K , or
– ϑ = logη for some η ∈ K , or
– ϑ = expη for some η ∈ K .

(f) ϑ is an (elementary) monomial over K if ϑ = logη or
ϑ = expη for some η ∈ K and ϑ is transcendental over K
with CK(ϑ) = CK .



Definition 3.1.11: Let K ⊆ L be a differential field extension. L is
an elementary extension or Liouville extension of K if there are
ϑ1, . . . , ϑn in L s.t. L = K (ϑ1, . . . , ϑn) and ϑi is elementary over
K (ϑ1, . . . , ϑi−1) for 1 ≤ i ≤ n.
L is a regular elementary extension of K if L is an elementary
extension of K , and all the intermediate transcendental extensions
are extensions by elementary monomials.
We say that f ∈ K has an elementary integral over K if there
exists an elementary extension E of K and g ∈ E s.t. g ′ = f .
An elementary function is an element of an elementary extension
of (C, d/dx).



Example 3.1.12: We shall take the liberty of nesting extensions
by simply listing them, so for example

K (expη1, logη2) = (K (expη1))(logη2) .

(a) Q(x , exp(x), log(exp(x) + 1), exp(x)2/3) is a regular
elementary extension of Q(x). But we cannot prove this here.

(b) Q(x , exp(x), exp(2x + 1)) is an elementary extension of Q(x).
But it is not regular, since

exp(2x + 1) / exp(x)2 = exp(1) ,

and thus a new transcendental constant is introduced.

(c) Q(x , log(x), exp(log(x)/3)) is not an extension by a
monomial of Q(x , log(x)), because

exp(log(x)/3) = x1/3

is algebraic over this field.



Without proof we quote the strong version of Liouville’s Theorem
on integration. This theorem can be found in [Bro97] as Theorem
5.5.3, where it is fully proved.

Theorem 3.1.13 (Liouville’s Theorem – strong version): Let
K be a differential field, C the field of constants of K, and f ∈ K.
If there exists an elementary extension E of K and g ∈ E s.t.
g ′ = f , then there are v ∈ K, c1, . . . , cn ∈ C, and
u1, . . . , un ∈ K (c1, . . . , cn)∗ such that

f = v ′ +
n∑

i=1

ci
u′i
ui
.

So if f has an elementary integral over K , then
∫
f is something in

K plus a sum of logarithms.



3.2 Differential polynomials

The following definitions and facts can be found in Chapter 1 of
[Ritt50].

Definition 3.2.1: Let (R,′ ) be a differential ring. Consider the
polynomial ring in infinitely many variables

R{y} = R[y (0), y (1), y (2), . . .] = R[y , y ′, y ′′, . . .] .

The derivation ′ on R can be extended to the following derivation
δ on R{y}:

δ
(∑

i

aiy
(i)
)

=
∑
i

(a′iy
(i) + aiy

(i+1)) .

So (R{y}, δ) is a differential ring, the ring of differential
polynomials over R. We call y a differential variable. Often we
also write ′ for δ.



Similarly, this construction can be extended to several
indeterminates. In this case there may be several derivations. The
differential ring is called ordinary if it is equipped with only one
derivation.



Definition 3.2.2: Let (R, δ) be an ordinary differential ring. An
ideal I of R is called a differential ideal iff I is closed under the
derivation δ; i.e., for all a ∈ I we have δ(a) ∈ I .
Let B be a set of differential polynomials in R. The differential
ideal generated by B, denoted by [B], is the ideal generated by all
elements in B and their derivatives. The radical differential ideal
generated by B, denoted by {B}, is the radical of [B].



Example 3.2.3: Consider the differential ring R = Q[x ] with the
usual derivation ′. Then the ring of differential polynomials in y
over R contains, for example, the differential polynomials

p(y) = 3xy ′′′− (2x2 + 5)y ′− 7, q(y) = (2x3 + x − 1)y ′′+ 3x2y .

The derivation of p is

p′(y) = 3xy (4) + 3y ′′′ − (2x2 + 5)y ′′ − 4xy ′ .

Observe that R{y} is a non-Noetherian ring. The ideal

< y , y ′, y ′′, . . . >

does not have a finite basis. But as a differential ideal
[y , y ′, y ′′, . . .] it has a finite basis, namely it can be written as [y ].



Definition 3.2.4: Let I be a differential ideal in the differential
ring R = (K{y}, δ), where K is a differential field. Let L be a
differential extension field of K . An element ξ ∈ L is called a zero
of I iff for all p(y) ∈ I we have p(ξ) = 0.
The defining differential ideal of ξ in R is {p(y) ∈ R | p(ξ) = 0}.
A point ξ ∈ L is called a generic zero of I iff I is the defining
differential ideal of ξ in R.



Remark 3.2.5: In commutative algebra every prime ideal in
K [x1, . . . , xn] has a generic zero in a suitable extension of K .
Similarly in differential algebra every prime differential ideal has a
generic zero in a suitable differential extension of K .
For example, the prime differential ideal generated by

y ′2 + 3y ′ − 2y − 3x ∈ Q(x){y}

has the generic zero ((x + c)2 + 3c)/2, where c is a transcendental
constant. The corresponding differential equation

y ′2 + 3y ′ − 2y − 3x = 0

has the general solution y(x) = ((x + c)2 + 3c)/2.



3.3 Linear differential operators
Definition 3.3.1: Let (R, δ) be a differential integral domain; δ is
also written as ′. We consider the non-commutative ring of linear
differential operators R[∂], where the rule for the multiplication of
∂ by an element of r ∈ R is

∂r = r∂ + r ′ .

The application of an operator A =
∑m

i=0 ai∂
i to an element of the

differential ring r ∈ R is defined as

A(r) =
m∑
i=0

ai r
(i) .

Here r (i) denotes the i-fold application of ′ to r .
If am 6= 0, the order of A is m and am is the leading coefficient of
A.
The application of A can naturally be extended to the quotient
field K of R, and to any field extension of K . If A(η) = 0, with η
in R, K or any extension of K , we call η a root of the linear
differential operator A.



Note that ∂r , which denotes the operator product of ∂ and r , is
distinct from ∂(r), the application ∂ to r , namely r ′.
The application of an operator a of order 0, i.e. an element a of R
considered as an operator, to r ∈ R is a(r) = a · r .



Proposition 3.3.1. For n ∈ N: ∂nr =
∑n

i=0

(n
i

)
r (n−i)∂ i .

Proof: For n = 0 this obviously holds.
Assume the fact holds for some n ∈ N. Then

∂n+1r

= ∂(∂nr) = ∂
(∑n

i=0

(n
i

)
r (n−i)∂i

)
=

∑n
i=0

(n
i

)
∂r (n−i)∂ i =

∑n
i=0

(n
i

)
[r (n−i)∂ + r (n−i+1)]∂i

=
∑n

i=0

(n
i

)
r (n−i)∂ i+1 +

∑n
i=0

(n
i

)
r (n−i+1)∂ i

=
∑n+1

i=1

( n
i−1
)
r (n+1−i)∂ i +

∑n
i=0

(n
i

)
r (n−i+1)∂ i

=
(n
n

)
r (0)∂n+1 +

∑n
i=1[

( n
i−1
)

+
(n
i

)
]r (n+1−i)∂ i +

(n
0

)
r (n+1)∂0

=
∑n+1

i=0

(n+1
i

)
r (n+1−i)∂ i . �



From a linear homogeneous ODE f (y) = 0, with f (y) ∈ R{y}, we
can extract a linear differential operator A = O(f ) such that the
given ODE can be written as

A(y) = 0,

in which y is regarded as an unknown element of R, K or some
extension of K . Such a linear homogeneous ODE always has the
trivial solution y = 0; so a linear differential operator always has
the trivial root 0.
In [Chardin:91] it is stated that K [∂] is left-Euclidean, and a few
brief remarks are provided by way of proof.



Since the concept of a left-Euclidean ring is not as widely known as
that of Euclidean ring, it may be helpful to recall its definition here.

Definition 3.3.2. A (potentially non-commutative) ring R is
left-Euclidean if there exists a function d : R∗ → N such that for
all a, b in R, with b 6= 0, there exist q and r in R such that
a = qb + r , with d(r) < d(b) or r = 0.



It follows from the left-Euclidean property that every left-ideal K I
of the form K I = (A,B) is principle, and is generated by the
right-gcd of A and B. As remarked in [Chardin:91], any linear
differential operator of positive order has a root in some extension
of K . We state this result precisely.

Theorem 3.3.3. (Ritt-Kolchin). Assume that the differential
field K has characteristic 0 and that its field C of constants is
algebraically closed. Then, for any linear differential operator A
over K of positive order n, there exist n roots η1, . . . , ηn in a
suitable extension of K, such that the ηi are linearly independent
over C . Moreover, the field K 〈η1, . . . , ηn〉 contains no constant not
in C.

This result is stated and proved in [Kolchin:48b] using results from
[Kolchin:48a] and [Ritt:32]. The field K 〈η1, . . . , ηn〉 associated
with A is known as a Picard-Vessiot extension of K (for A).
Henceforth assume the hypotheses of Theorem 3.3.3.



It follows from Theorem 3.3.3 that if the operators A,B ∈ K [∂]
have a common factor F of positive order on the right, i.e.,

A = A · F , and B = B · F , (3.1)

then they have a non-trivial common root in a suitable extension of
K . For by Theorem 3.3.3 F has a root η 6= 0 in an extension of K .
We have A(η) = Ā(F (η)) = Ā(0) = 0 and similarly B(η) = 0.



On the other hand, if A and B have a non-trivial common root η
in a suitable extension of K , we show that they have a common
right factor of positive order in K [∂]. Let F be a nonzero
differential operator of lowest order s.t. F (η) = 0. Then F has
positive order. Because the ring of operators is left-Euclidean, F is
unique up to multiplication of non-zero elements of K . This F is a
right divisior of both A and B. To see this, apply division in the
left-Euclidean ring K [∂]:

A = Q · F + R,

with the order of R less than the order of F , or R = 0. Apply both
sides of this equation to η:

A(η) = (Q · F )(η) + R(η).

Since A(η) = 0 and F (η) = 0, R(η) = 0. Therefore, by minimality
of F , R = 0. Hence F is a right divisor of A. We see that F is a
right divisor of B similarly. We summarize our result in the
following theorem.



Theorem 3.3.4. Assume that K has characteristic 0 and that its
field of constants is algebraically closed. Let A,B be differential
operators of positive orders in K [∂]. Then the following are
equivalent:

(i) A and B have a common non-trivial root in an extension of K,

(ii) A and B have a common factor of positive order on the right
in K [∂].



In the following chapter we will investigate the existence of a
non-trivial factor, and we will see that (3.1) is equivalent to the
existence of a non-trivial order-bounded linear combination

CA + DB = 0 , (3.2)

with order(C ) < order(B) and order(D) < order(A), and
(C ,D) 6= (0, 0).
This will lead to the concept of a differential resultant.
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Thank you for your attention!


