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The problem we consider in this section is the integration of
rational functions with rational coefficients, i.e. to compute∫

p(x)

q(x)
dx ,

where p(x), q(x) ∈ Q[x ], gcd(p, q) = 1, and q(x) is monic. We
exclude the trivial case q = 1.
From classical calculus we know that this integral can be expressed
as∫

p(x)

q(x)
dx =

g(x)

q(x)
+c1 · log(x−α1)+ · · ·+cn · log(x−αn), (2.1)

where g(x) ∈ Q[x ], α1, . . . , αn are the different roots of q in C,
and c1, . . . , cn ∈ Q(α1, . . . , αn). This requires factorization of q
over C into its linear factors, decomposing p/q into its complete
partial fraction decomposition, and computation in the potentially
extremely high degree algebraic extension Q(α1, . . . , αn). Then the
solution (2.1) is achieved by integration by parts and C. Hermite’s
reduction method.



However, as we will see in the sequel, complete factorization of the
denominator can be avoided, resulting in a considerable decrease in
computational complexity. Instead of factoring q we will only use
its squarefree factors.

The material for this chapter is taken from Chapter 4 of [Win96].



2.1 Squarefree factorization and partial fraction decomposition

A Euclidean domain in which quotient and remainder are
computable by algorithms quot and rem admits an algorithm for
computing the greatest common divisor g of any two elements
a, b. This algorithm has originally been stated by Euclid for the
domain of the integers. In fact, it can be easily extended to
compute not only the gcd but also the coefficients s, t in the linear
combination g = s · a + t · b, i.e. the Bezout cofactors.

Q[x ] is such a Euclidean domain. So the algorithm E EUCLID
computes the gcd and the Bezout cofactors of two polynomials.



GCD EUCLID
for given non-zero polynomials a, b ∈ K [x ],
compute the GCD g and the Bézout cofactors s, t
(1) (r0, r1, s0, s1, t0, t1) := (a, b, 1, 0, 0, 1);

i := 1;
(2) while ri 6= 0 do

qi := quotient of ri−1 on division by ri ;
(ri+1, si+1, ti+1) := (ri−1, si−1, ti−1)− qi · (ri , si , ti );
i := i + 1

endwhile ;
(3) (g , s, t) := (ri−1, si−1, ti−1) ; return



Theorem 2.1.1. Let a, b be non-zero polynomials in Q[x ] with
deg(a) ≥ deg(b) > 0. Let g , s, t be the result of applying
E EUCLID to a and b. Then deg(s) < deg(b)− deg(g) and
deg(t) < deg(a)− deg(g).

Corollary. Let a, b be non-zero, relatively prime polynomials in
Q[x ]. Let c ∈ Q[x ] such that deg(c) < deg(a · b). Then c can be
represented uniquely as c = u · a + v · b, where deg(u) < deg(b)
and deg(v) < deg(a).



By a few GCD computations we can determine the squarefree
factorization of a polynomial in Q[x ]. For a proof of the following
theorem we refer to [Win96], Theorem 4.4.1.

Theorem 2.1.2. Let K be a field of characteristic 0, and a(x) a
non-constant polynomial in K [x ]. Then a is squarefree if and only
if gcd(a, a′) = 1 (where a′ denotes the derivative of a w.r.t x).

From this theorem we easily derive an algorithm for determining
the squarefree factorization of a polynomial a(x) in Q[x ]:

a(x) =
s∏

i=1

ai (x)i ,

for squarefree, pairwise relatively prime factors ai (x). Details are
given in [Win 96].



Example 2.1.3. Let us determine the squarefree factorization of

a(x) = x5+6x4+11x3+2x2−12x−8 = (x + 1)(x − 1)︸ ︷︷ ︸
a1

·( 1︸︷︷︸
a2

)2·(x + 2︸ ︷︷ ︸
a3

)3

> a:= expand((x+1)*(x-1)*(x+2)ˆ3);

a := x5 + 6x4 + 11x3 + 2x2 − 12x − 8

> b0:= a;
b0 := x5 + 6x4 + 11x3 + 2x2 − 12x − 8

> b1 := gcd(b0,diff(b0,x)):
> factor(b1);

(x + 2)2

> c1 := simplify(b0/b1):
> factor(c1);

(x − 1)(x + 1)(x + 2)

> b2 := gcd(b1,diff(b1,x));

b2 := x + 2

> c2 := simplify(b1/b2);

c2 := x + 2



> a1 := simplify(c1/c2);

a1 := x2 − 1

> b3 := gcd(b2,diff(b2,x));

b3 := 1

> c3 := simplify(b2/b3);

c3 := x + 2

> a2 := simplify(c2/c3);
a2 := 1

> b4 := gcd(b3,diff(b3,x));

b4 := 1

> c4 := simplify(b3/b4);
c3 := 1

> a3 := simplify(c3/c4);

a3 := x + 2

So we have determined the squarefree factors a1, a2, a3 of a.



Definition 2.1.4. Let p(x)/q(x) be a proper rational function
over in Q(x); i.e., p, q ∈ Q[x ], gcd(p, q) = 1, and
deg(p) < deg(q). Let q = q1 · q22 · · · qkk be the squarefree
factorization of q. Let a1(x), . . . , ak(x) ∈ K [x ] be such that

p(x)

q(x)
=

k∑
i=1

ai (x)

qi (x)i
with deg(ai ) < deg(qii ) for 1 ≤ i ≤ k .

(2.1.1)
Then the right hand side of (2.1.1) is called the incomplete
squarefree partial fraction decomposition (ispfd) of p/q.
Let bij(x) ∈ Q[x ], 1 ≤ j ≤ i ≤ k , be such that

p(x)

q(x)
=

k∑
i=1

i∑
j=1

bij(x)

qi (x)j
with deg(bij) < deg(qi ) for 1 ≤ j ≤ i ≤ n.

(2.1.2)
Then the right hand side of (2.1.2) is called the (complete)
squarefree partial fraction decomposition (spfd) of p/q.



Both the incomplete and the complete squarefree partial fraction
decomposition of a proper rational function are uniquely
determined. For any proper rational function p/q the ispfd can be
computed by the following algorithm.

algorithm ISPFD(in: p, q; out: D);
[p/q is a proper rational function in K (x),

D = [[a1, q1], . . . , [ak , qk ]] is the ispfd of p/q, i.e. p/q =
∑k

i=1(ai/q
i
i )

with deg(ai ) < deg(qii ) for 1 ≤ i ≤ k .]
(1) [q1, . . . , qk ] := SQFR FACTOR(q);
(2) c0 := p; d0 := q; i := 1;
(3) while i < k do

{ di := di−1/q
i
i ;

determine ci , ai such that
deg(ci ) < deg(di ), deg(ai ) < deg(qii ),
and ci · qii + ai · di = ci−1 };

ak := ck−1;
return



Theorem 2.1.5. The algorithm ISPFD is correct.

Proof: Immediately before execution of the body of the while
statement for i , the relation

p

q
=

a1
q1

+ · · ·+ ai−1

qi−1i−1
+

ci−1
di−1

, where di−1 = qii · · · qkk ,

holds, as can easily be seen by induction on i .
The polynomials ci and ai in step (3) can be computed by
application of the Corollary to Theorem 2.1.1.

Once we have the incomplete spfd we can rather easily get the
complete spfd by successive division. Namely if ai = s · qi + t, then

ai
qii

=
s

qi−1i

+
t

qii
.



Example 2.1.6. Consider the proper rational function

p(x)

q(x)
=

4x8 − 3x7 + 25x6 − 11x5 + 18x4 − 9x3 + 8x2 − 3x + 1

3x9 − 2x8 + 7x7 − 4x6 + 5x5 − 2x4 + x3
.

The squarefree factorization of q(x) is

q(x) = (3x2 − 2x + 1)(x2 + 1)2x3,

Application of ISPFD yields the incomplete spfd

p(x)

q(x)
=

4x

3x2 − 2x + 1
+
−x3 + 2x + 2

(x2 + 1)2
+

x2 − x + 1

x3
.

By successive division of the numerators by the corresponding qi ’s
we finally get the complete spfd

p(x)

q(x)
=

4x

3x2 − 2x + 1
+
−x

x2 + 1
+

3x + 2

(x2 + 1)2
+

1

x
+
−1

x2
+

1

x3
.



2.2 The integration algorithm

The problem we consider in this section is the integration of
rational functions with rational coefficients, i.e. to compute∫

p(x)

q(x)
dx =

g(x)

q(x)
+c1 ·log(x−α1)+· · ·+cn ·log(x−αn), (2.2.1)

where p(x), q(x) ∈ Q[x ], gcd(p, q) = 1, and q(x) is monic. We
exclude the trivial case q = 1.



First we compute the squarefree factorization of the denominator
q, i.e.

q = f1 · f 22 · · · · · f rr ,

where the fi ∈ Q[x ] are squarefree, fr 6= 1, gcd(fi , fj) = 1 for i 6= j .
Based on this squarefree factorization we compute the squarefree
partial fraction decomposition of p/q, i.e.

p

q
= g0 +

r∑
i=1

i∑
j=1

gij

f ji
= g0 +

g11
f1

+
g21
f2

+
g22
f 22

+ · · ·+ gr1
fr

+ · · ·+ grr
f rr
,

(2.2.2)
where g0, gij ∈ Q[x ], deg(gij) < deg(fi ), for all 1 ≤ j ≤ i ≤ r .
Integrating g0 is no problem, so let us consider the individual terms
in (2.2.2).



Now let g
f n be one of the non-trivial terms in (1.2.1) with n ≥ 2,

i.e. f is squarefree and deg(g) < deg(f ). We reduce the
computation of ∫

g(x)

f (x)n
dx

to the computation of an integral of the form∫
h(x)

f (x)n−1
dx , where deg(h) < deg(f ).

This is achieved by a reduction process due to C. Hermite.



Since f is squarefree, we have gcd(f , f ′) = 1. By the extended
Euclidean algorithm E EUCLID and the corollary to Theorem 2.1.1
compute c , d ∈ Q[x ] such that

g = c · f + d · f ′, where deg(c), deg(d) < deg(f ).

By integration by parts we can now reduce 1∫ g
f n =

∫
c·f+d ·f ′

f n =
∫

c
f n−1 +

∫
d ·f ′
f n

=
∫

c
f n−1 − d

(n−1)·f n−1 +
∫

d ′

(n−1)·f n−1

= − d
(n−1)·f n−1 +

∫ h︷ ︸︸ ︷
c + d ′/(n − 1)

f n−1 ,

where deg(h) < deg(f ).

1 integration by parts:
∫
u · v ′ = u · v −

∫
u′ · v .

Choose: u = −d , v = 1/((n − 1)f n−1); so u′ = −d ′, v ′ = −f ′/f n.



Now we collect all the rational partial results and the remaining
integrals and put everything over a common denominator, so that
we get polynomials g(x), h(x) ∈ Q[x ] such that∫

p

q
=

∫
g0 +

g

f2 · f 23 · · · f r−1r︸ ︷︷ ︸
q

+

∫
h

f1 · · · · · fr︸ ︷︷ ︸
q∗

, (2.2.3)

where deg(g) < deg(q) and deg(h) < deg(q∗).



We could also determine g and h in (2.2.3) by first choosing
undetermined coefficients for these polynomials, differentiating
(4.6.3), and then solving the resulting linear system for the
undetermined coefficients. However, the Hermite reduction process
is usually faster. Let us prove that the decomposition in (2.2.3) is
unique.



Lemma 2.2.1. Let p, q, u, v ∈ Q[x ], gcd(p, q) = 1, gcd(u, v) = 1,
and p/q = (u/v)′ (so u/v is the integral of p/q). Let w ∈ Q[x ] be
a squarefree factor of q. Then w divides v , and the multiplicity of
w in q is strictly greater than the multiplicity of w in v .

Proof: Clearly we can restrict ourselves to w being irreducible
(otherwise apply the lemma for all irreducible factors of w). Now,
since (u

v

)′
=

u′v − uv ′

v2
=

p

q
,

w must divide v . Assume now that v = w r ŵ with gcd(w , ŵ) = 1.
We show that w r does not divide u′v − uv ′. Suppose it does.
Since w r divides u′v and gcd(w , u) = 1, w r would have to divide
v ′ = rw r−1w ′ŵ + w r ŵ ′. Hence, w would have to divide w ′ŵ . But
this is impossible since w is irreducible. Therefore w r+1 must
divide the reduced denominator of (u/v)′.



Theorem 2.2.2. The solution g , h to equation (2.2.3) is unique.

Proof: Suppose there were two solutions. By subtraction we would
get a solution for p = 0,∫

0dx =
g

q
+

∫
h

q∗
dx .

So (g/q)′ = −h/q∗. By Lemma 2.2.1, every factor in the
denominator of h/q∗ must have multiplicity at least 2. This is
impossible, since q∗ is squarefree.



The integral
∫
h/q∗ can be computed in the following well–known

way: Let q∗(x) = (x − α1) · · · (x − αn), where α1, . . . , αn are the
distinct roots of q∗. Then∫ h(x)

q∗(x)dx =
∑n

i=1

∫
ci

x−αi
dx =

∑n
i=1 ci log(x − αi )

with ci = h(αi )
q∗′(αi )

, 1 ≤ i ≤ n.
(2.2.4)

No part of the sum of logarithms in (2.2.4) can be a rational
function, as we can see from the following theorem in [Hardy
1916], p. 14.



Theorem 2.2.3. Let α1, . . . , αn be distinct elements of C and
c1, . . . , cn ∈ C. If

∑n
i=1 ci log(x − αi ) is a rational function, then

ci = 0 for all 1 ≤ i ≤ n.

Example 2.2.4. Let us integrate x/(x2 − 2) according to (2.2.4).∫
x

x2−2dx =
∫ 1/2

x−
√
2
dx +

∫ 1/2

x+
√
2
dx

= 1
2(log(x −

√
2) + log(x +

√
2))

= 1
2 log(x2 − 2).

So obviously we do not always need the full splitting field of q∗ in
order to express the integral of h/q∗. In fact, whenever we have
two logarithms with the same constant coefficient, we can combine
these logarithms.



The following theorem, which has been independently discovered
by M. Rothstein [Rothstein 1976] and B. Trager [Trager 1976],
answers the question of what is the smallest field in which we can
express the integral of h/q∗.

Theorem 2.2.5. Let p, q ∈ Q[x ] be relatively prime, q monic and
squarefree, and deg(p) < deg(q). Let∫

p

q
=

n∑
i=1

ci log vi , (2.2.5)

where the ci are distinct non–zero constants and the vi are monic
squarefree pairwise relatively prime elements of Q[x ]. Then the ci
are the distinct roots of the polynomial

r(c) = resx(p − c · q′, q) ∈ Q[c],

and
vi = gcd(p − ci · q′, q), for 1 ≤ i ≤ n.



Proof: Let ui = (
∏n

j=1 vj)/vi , for 1 ≤ i ≤ n. Then by
differentiation of (2.2.5) we get

p ·
n∏

i=1

vi = q ·
n∑

i=1

civ
′
i ui .

So q|
∏n

i=1 vi and on the other hand each vi |qv ′i ui , which implies
that each vi |q. Hence,

q =
n∏

i=1

vi , and p =
n∑

i=1

civ
′
i ui .

Consequently, for each j , 1 ≤ j ≤ n, we have

vj = gcd(0, vj) = gcd(p −
∑n

i=1 civ
′
i ui , vj)

= gcd(p − cjv
′
j uj , vj) = gcd(p − cj

∑n
i=1 v

′
i ui , vj)

= gcd(p − cjq
′, vj),

and for l 6= j we have

gcd(p − cjq
′, vl) = gcd(p − cjv

′
l ul , vl) = gcd((cl − cj)v

′
l ul , vl) = 1.

Thus we conclude that

vi = gcd(p − ciq
′, q), for 1 ≤ i ≤ n. (2.2.6)



(2.2.6) implies that resx(p − ciq
′, q) = 0 for all 1 ≤ i ≤ n.

Conversely, if c ∈ Q and resx(p − cq′, q) = 0, then
gcd(p − cq′, q) = s(x) ∈ Q[x ] with deg(s) > 0. Thus, any
irreducible factor t(x) of s(x) divides
p − cq′ =

∑n
i=1 civ

′
i ui − c

∑n
i=1 v

′
i ui . Since t divides one and only

one vj , we get t|(cj − c)v ′j uj , which implies that cj − c = 0. Thus,
the cj are exactly the distinct roots of r(c).



Example 2.2.4. (continued) We apply Theorem 2.2.5.
r(c) = resx(p − cq′, q) = resx(x − c(2x), x2 − 2) = −2(2c − 1)2.
There is only one root of r(c), namely c1 = 1/2. We get the
argument of the corresponding logarithm as
v1 = gcd(x − 1

2(2x), x2 − 2) = x2 − 2. So∫
x

x2 − 2
dx =

1

2
log(x2 − 2).



Example 2.2.6. Let us consider integrating the rational function

p(x)

q(x)
=

4x8 − 3x7 + 25x6 − 11x5 + 18x4 − 9x3 + 8x2 − 3x + 1

3x9 − 2x8 + 7x7 − 4x6 + 5x5 − 2x4 + x3
.

The squarefree factorization of q(x) is

q(x) = (3x2 − 2x + 1)(x2 + 1)2x3,

so the squarefree partial fraction decomposition of p/q is

p(x)

q(x)
=

4x

3x2 − 2x + 1
+
−x

x2 + 1
+

3x + 2

(x2 + 1)2
+

1

x
+
−1

x2
+

1

x3
.



Now let us consider the third term of this decomposition, i.e. we
determine ∫

3x + 2

(x2 + 1)2
dx .

By the extended Euclidean algorithm we can write

3x + 2 = 2 · (x2 + 1) + (−x +
3

2
) · (2x).

Integration by parts yields∫
3x+2

(x2+1)2
dx =

∫
2

x2+1
dx +

∫ (−x+ 3
2
)·(2x)

(x2+1)2
dx

=
∫

2
x2+1

dx +
(−x+ 3

2
)·(−1)

x2+1
−
∫

1
x2+1

dx

+
x− 3

2
x2+1

+
∫

1
x2+1

dx

The remaining integral is purely logarithmic, namely∫
1

x2 + 1
dx =

i

2
· log(1− ix)− i

2
· log(1+ ix) = arctan(x).



Thank you for your attention!


