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8. Rational parametrization of curves

Most of the results in this chapter are obvious for lines.
For this reason, and for simplicity in the explanation, we exclude
lines from our treatment of rational parametrizations.
K is an algebraically closed field of characteristic 0.



8.1 Rational curves and parametrizations

Some plane algebraic curves can be expressed by means of rational
parametrizations, i.e. pairs of univariate rational functions that,
except for finitely many exceptions, represent all the points on the
curve.

For instance, the parabola y = x2 can also be described as the set
{(t, t2) | t ∈ K}; in this case, all affine points on the parabola are
given by the parametrization (t, t2).



Or compare Example 6.2.2. Also, the tacnode curve defined in
A2(C) by the polynomial

f (x , y) = 2x4 − 3x2y + y2 − 2y3 + y4

can be represented, for instance, as{(
t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

t2 − 4t + 4

2t4 − 16t3 + 40t2 − 32t + 9

) ∣∣∣∣ t ∈ C
}
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However, not all plane algebraic curves can be rationally
parametrized, as we will see in Example 8.1.1.
In this section we introduce the notion of rational or
parametrizable curve and we study the main properties and
characterizations of this type of curves.
In the next sections we will show how to check the rationality by
algorithmic methods and how to actually compute rational
parametrizations of algebraic curves.

In Definition 6.2.5 we have introduced the notion of rationality for
an arbitrary variety by means of rational isomorphisms. Now, we
give a particular definition for the case of plane curves. Later, in
Theorem 8.1.7, we prove that both definitions are equivalent.



Definition 8.1.1. The affine curve C in A2(K ) defined by the
square–free polynomial f (x , y) is rational (or parametrizable) if
there are rational functions χ1(t), χ2(t) ∈ K (t) such that

1. for almost all (i.e. for all but a finite number of exceptions)
t0 ∈ K , (χ1(t0), χ2(t0)) is a point on C, and

2. for almost every point (x0, y0) ∈ C there is a t0 ∈ K such that
(x0, y0) = (χ1(t0), χ2(t0)).

In this case (χ1(t), χ2(t)) is called a (rational affine)
parametrization of C.
We say that (χ1(t), χ2(t)) is in reduced form if the rational
functions χ1(t), χ2(t) are in reduced form; i.e. if for i = 1, 2 the
gcd of the numerator and the denominator of χi is trivial.



Definition 8.1.2. The projective curve C in P2(K ) defined by the
square–free homogeneous polynomial F (x , y , z) is rational (or
parametrizable) if there are polynomials χ1(t), χ2(t), χ3(t) ∈ K [t],
gcd(χ1, χ2, χ3) = 1, such that

1. for almost all t0 ∈ K , (χ1(t0) : χ2(t0) : χ3(t0)) is a point on
C, and

2. for almost every point (x0 : y0 : z0) ∈ C there is a t0 ∈ K such
that (x0 : y0 : z0) = (χ1(t0) : χ2(t0) : χ3(t0)).

In this case, (χ1(t), χ2(t), χ3(t)) is called a (rational projective)
parametrization of C.



If C is an affine rational curve, and P(t) is a rational affine
parametrization of C over K , we write its components either as

P(t) =

(
χ1 1(t)

χ1 2(t)
,
χ2 1(t)

χ2 2(t)

)
,

where χi ,j(t) ∈ K [t], or as

P(t) = (χ1(t), χ2(t)),

where χi (t) ∈ K (t). Similarly, rational projective parametrizations
are expressed as

P(t) = (χ1(t), χ2(t), χ3(t)),

where χi (t) ∈ K [t] and gcd(χ1, χ2, χ3) = 1.



Furthermore, associated with a given parametrization P(t) we
consider the polynomials

GP1 (s, t) = χ1 1(s)χ1 2(t)− χ1 2(s)χ1 1(t),

GP2 (s, t) = χ2 1(s)χ2 2(t)− χ2 2(s)χ2 1(t)

as well as the polynomials

HP1 (t, x , y) = x ·χ1 2(t)−χ1 1(t), HP2 (t, x , y) = y ·χ2 2(t)−χ2 1(t).

The roots (s0, t0) of the polynomials GPi express that s0 and t0
generate the same curve point. The polynomials HPi play an
important role in the implicitization of a parametrically given curve.



Remark.

(1) Later we will introduce the notion of local parametrization of
a curve over K , not necessarily rational. Rational
parametrizations are also called global parametrizations, and
can only be achieved for genus zero curves (see Theorem
8.1.8.). On the other hand, since K (t) ⊂ K ((t)), it is clear
that any global parametrization is a local parametrization. By
interpreting the numerator and denominator of a global
parametrization as formal power series, and formally dividing,
we get exactly a local parametrization.



(2) The notion of rational parametrization can be stated by
means of rational maps as we did in Definition 6.2.5. More
precisely, let C be a rational affine curve and P(t) ∈ K (t)2 a
parametrization of C. If t0 ∈ K is such that the denominators
of the rational functions in P(t) are defined, then P(t0) ∈ C.
Thus, the parametrization P(t) induces the rational map

P : A1(K ) −→ C
t 7−→ P(t),

and P(A1(K )) is a dense (in the Zariski topology) subset of C.



(3) Every rational parametrization P(t) defines a monomorphism
from the field of rational functions K (C) to K (t) as follows
(see proof of Theorem 8.1.6.):

ϕ : K (C) −→ K (t)
R(x , y) 7−→ R(P(t)).



Example 8.1.1. An example of an irreducible curve which is not
rational is the projective cubic C, defined over C, by x3 + y3 = z3.
Suppose that C is rational, and let (χ1(t), χ2(t), χ3(t)) be a
parametrization of C in reduced form. Then

χ3
1 + χ3

2 − χ3
3 = 0.

Differentiating this equation by t we get

3 · (χ′1χ2
1 + χ′2χ

2
2 − χ′3χ2

3) = 0.

So χ2
1, χ

2
2, χ

2
3 are a solution of the system of homogeneous linear

equations with coefficient matrix(
χ1 χ2 −χ3

χ′1 χ′2 −χ′3

)
.



By elementary line operations we reduce this coefficient matrix to 1(
χ2χ

′
1 − χ′2χ1 0 χ′2χ3 − χ2χ

′
3

0 χ2χ
′
1 − χ′2χ1 χ′3χ1 − χ3χ

′
1

)
.

So

χ2
1 : χ2

2 : χ2
3 = −χ2χ

′
3 + χ3χ

′
2 : −χ3χ

′
1 + χ1χ

′
3 : χ1χ

′
2 − χ2χ

′
1.

Since χ1, χ2, χ3 are relatively prime, this proportionality implies

χ2
1 | (χ2χ

′
3 − χ3χ

′
2), χ2

2 | (χ3χ
′
1 − χ1χ

′
3), χ2

3 | (χ1χ
′
2 − χ2χ

′
1).

Suppose deg(χ1) ≥ deg(χ2), deg(χ3). Then the first divisibility
implies 2 deg(χ1) ≤ deg(χ2) + deg(χ3)− 1, a contradiction.
Similarly we see that deg(χ2) ≥ deg(χ1), deg(χ3) and
deg(χ3) ≥ deg(χ1), deg(χ2) are impossible.
Thus, there can be no parametrization of C. �

1−χ′
2 · l1 + χ2 · l2 and χ′

1 · l1− χ1 · l2



Theorem 8.1.1. Any rational curve is irreducible.

Proof: Let C be a rational affine curve (similarly if C is projective)
parametrized by a rational parametrization P(t). First observe that
the ideal of C consists of the polynomials vanishing at P(t), i.e.

I (C) = {h ∈ K [x , y ] | h(P(t)) = 0} .

Indeed, if h ∈ I (C) then h(P) = 0 for all P ∈ C. In particular h
vanishes on all points generated by the parametrization, and hence
h(P(t)) = 0. Conversely, let h ∈ K [x , y ] be such that
h(P(t)) = 0. Therefore, h vanishes on all points of the curve
generated by P(t), i.e. on all points of C with finitely many
exceptions. So, it vanishes on C, i.e. h ∈ I (C).

Finally, in order to prove that C is irreducible, we prove that I (C) is
prime. Let h1 · h2 ∈ I (C). Then h1(P(t)) · h2(P(t)) = 0. Thus,
either h1(P(t)) = 0 or h2(P(t)) = 0. Therefore, either h1 ∈ I (C)
or h2 ∈ I (C). �



Lemma 8.1.2. Let C be an irreducible affine curve and C∗ its
corresponding projective curve. Then C is rational if and only if C∗
is rational. Furthermore, a parametrization of C can be computed
from a parametrization of C∗ and vice versa.

Proof: Let
(χ1(t), χ2(t), χ3(t))

be a parametrization of C∗. Observe that χ3(t) 6= 0, since the
curve C∗ can have only finitely many points at infinity. Hence,(

χ1(t)

χ3(t)
,
χ2(t)

χ3(t)

)
is a parametrization of the affine curve C.

Conversely, a rational parametrization of C can always be extended
to a parametrization of C∗ by setting the z–coordinate to 1. �



Lemma 8.1.3. Let χ1(t), χ2(t) ∈ K (t) be rational functions in
reduced form, not both of them constant. Then,

P(t) = (χ1(t), χ2(t))

parametrizes an irreducible plane curve C over K . Moreover, if
none of the two rational functions is constant and f (x , y) is the
defining polynomial of C, there exists r ∈ N such that

rest(H
P
1 (t, x , y),HP2 (t, x , y)) = (f (x , y))r .

—————
Note that in the second part of the statement of this lemma, we
require that the parametrization should not have a constant
component. This is not a loss of generality since this situation
corresponds to the lines x = λ or y = λ, for some λ ∈ K .



Proof: If one of the two rational functions is constant, then P(t)
parametrizes a horizontal or vertical line. Suppose
P(t) = (χ1(t), a). Then f (x , y) = y − a, H1 = x · χ12(t)− χ11(t),
H2 = y − a. So rest(H1,H2) = (y − a)deg(χ1).

Now, let us assume that none of the components of P(t) is
constant.
Let χi (t) =

χi,1(t)
χi,2(t)

, and let

h(x , y) = rest(H
P
1 (t, x , y),HP2 (t, x , y)).

First we observe that HP1 and HP2 are irreducible, because χ1(t)
and χ2(t) are in reduced form. Hence HP1 and HP2 do not have
common factors. Therefore, h(x , y) is not the zero polynomial.
Furthermore, h cannot be a constant polynomial either. Indeed: let
t0 ∈ K be such that χ1 2(t0)χ2 2(t0) 6= 0. Then
HP1 (t0,P(t0)) = HP2 (t0,P(t0)) = 0. So h(P(t0)) = 0, and since h
is not the zero polynomial it cannot be constant.



Now, we consider the square–free part h′(x , y) of h(x , y) and the
plane curve C defined by h′(x , y) over K . Let us see that P(t)
parametrizes C. For this purpose, we check the conditions
introduced in Definition 8.1.1.

1. Let t0 ∈ K be such that χ1 2(t0)χ2 2(t0) 6= 0. Reasoning as
above, we see that h(P(t0)) = 0. So h′(P(t0)) = 0, and
hence P(t0) is on C.

2. Let c1, c2 be the leading coefficients of HP1 ,H
P
2 w.r.t. t,

respectively. Note that c1 ∈ K [x ], c2 ∈ K [y ] are of degree at
most 1. For every (x0, y0) on C such that c1(x0) 6= 0 or
c2(y0) 6= 0 (note that there is at most one point in K 2 where
c1 and c2 vanish simultaneously), we have h(x0, y0) = 0.
Thus, since h is a resultant, there exists t0 ∈ K such that
HP1 (t0, x0, y0) = HP2 (t0, x0, y0) = 0. Also, observe that
χ1 2(t0) 6= 0 since otherwise the first component of the
parametrization would not be in reduced form. Similarly,
χ2 2(t0) 6= 0. Thus, (x0, y0) = P(t0). Therefore, almost all
points on C are generated by P(t).

Now by Theorem 8.1.1. it follows that h′ is irreducible. Therefore,
there exists r ∈ N such that h(x , y) = (h′(x , y))r . �



Theorem 8.1.4. An irreducible curve C, defined by f (x , y), is
rational if and only if there exist rational functions
χ1(t), χ2(t) ∈ K (t), not both constant, such that
f (χ1(t), χ2(t)) = 0. In this case, (χ1(t), χ2(t)) is a rational
parametrization of C.

Proof: Let C be rational. So there exist rational functions
χ1, χ2 ∈ K (t) satisfying conditions (1) and (2) in Definition 8.1.1.
Obviously not both rational functions χi are constant, and clearly
f (χ1(t), χ2(t)) = 0.

Conversely, let χ1, χ2 ∈ K (t), not both constant, be such that
f (χ1(t), χ2(t)) is identically zero. Let D be the irreducible plane
curve defined by (χ1(t), χ2(t)) (see Lemma 8.1.3). Then C and D
are both irreducible, because of Theorem 8.1.1, and have infinitely
many points in common. Thus, by Bézout’s theorem one concludes
that C = D. Hence, (χ1(t), χ2(t)) is a parametrization of C. �



An alternative characterization of rationality in terms of field
theory is given in Theorem 8.1.6. This theorem can be seen as the
geometric version of Lüroth’s Theorem. Lüroth’s Theorem appears
in basic text books on algebra such as [Wae70]. Here we do not
give a proof of this result.

Theorem 8.1.5. (Lüroth’s Theorem) Let L be a field (not
necessarily algebraically closed). Then every subfield K of L(t),
where t is a transcendental element over L, such that K strictly
contains L, is L-isomorphic to L(t).



Theorem 8.1.6. An irreducible affine curve C is rational if and
only if the field of rational functions on C, i.e. K (C), is isomorphic
to K (t) (t a transcendental element).

Proof: Let f (x , y) be the defining polynomial of C, and let P(t) be a
parametrization of C. We consider the map

ϕP : K (C) −→ K (t)
R(x , y) 7−→ R(P(t)).

First we observe that ϕP is well-defined. Let p1
q1
, p2q2 , where

pi , qi ∈ K [x , y ], be two different expressions of the same element in K (C).
Then f divides p1q2 − q1p2. By Theorem 8.1.4, f (P(t)) is identically
equal to zero, and therefore p1(P(t))q2(P(t))− q1(P(t))p2(P(t)) is also
identically zero. Furthermore, since q1 6= 0 in K (C), we have
q1(P(t)) 6= 0. Similarly q2(P(t)) 6= 0. Therefore, ϕP( p1

q1
) = ϕP( p2

q2
).

Now, since ϕP is not the zero homomorphism, and ϕP is injective 2 one
has that ϕP defines an isomorphism of K (C) onto a subfield of K (t) that
properly contains K . Thus, by Lüroth’s Theorem, this subfield, and K (C)
itself, must be isomorphic to K (t).

2 p1
q1

(P) = p2
q2

(P) implies p1q2 − p2q1 = 0 on infinitely many points, so it is
identically 0



Conversely, let ψ : K (C)→ K (t) be an isomorphism and
χ1(t) = ψ(x), χ2(t) = ψ(y). Clearly, since the image of ψ is K (t),
χ1 and χ2 cannot both be constant. Furthermore

f (χ1(t), χ2(t)) = f (ψ(x), ψ(y)) = ψ(f (x , y)) = 0.

Hence, by Theorem 8.1.4, (χ1(t), χ2(t)) is a rational
parametrization of C. �



Rationality can also be established by means of rational maps. The
next characterization shows that Definitions 8.1.1 and 6.2.5 (for
plane curves) are equivalent. Furthermore, it implies that the
notions of rationality and unirationality are equivalent for plane
curves.

Theorem 8.1.7. An affine algebraic curve C is rational if and only
if it is birationally equivalent to K (i.e. the affine line A1(K )).

Proof: By Theorem 6.2.3. one has that C is birationally equivalent
to K if and only if K (C) is isomorphic to K (t). Thus, by Theorem
8.1.6 we get the desired result. �



The following theorem states that rational curves are precisely
those with genus zero. In fact, all irreducible conics are rational,
and an irreducible cubic is rational if and only if it has a double
point. We get this theorem by using the fact (which we have not
proved) that the genus is invariant under birational maps.

Theorem 8.1.8. An algebraic curve C is rational if and only if
genus(C) = 0.



8.2 Proper parametrizations

Although the implicit representation for a plane curve is unique, up
to a constant, there exist infinitely many different parametrizations
of the same rational curve. For instance, for every i ∈ N, (t i , t2i )
parametrizes the parabola y = x2. Obviously (t, t2) is the
parametrization of lowest degree in this family. Such
parametrizations are called proper parametrizations.

The parametrization algorithms presented in this chapter always
output proper parametrizations. Furthermore, there are algorithms
for determining whether a given parametrization of a plane curve is
proper, and if that is not the case, for transforming it to a proper
one. In Section 6.1 we will describe these methods.

In this section, we introduce the notion of proper parametrization
and we study some of the main properties. For this purpose, in the
following we assume that C is an affine rational plane curve, and
P(t) is a rational affine parametrization of C.



Definition 8.2.1. An affine parametrization P(t) of a rational
curve C is proper if the map

P : A1(K ) −→ C
t 7−→ P(t)

is birational, or equivalently, if almost every point on C is
generated by exactly one value of the parameter t.
We define the inversion of a proper parametrization P(t) as the
inverse rational mapping of P, and we denote it by P−1.



Lemma 8.2.1. Every rational curve can be properly parametrized.

Proof: From Theorem 8.1.7. one deduces that any rational curve
C is birationally equivalent to A1(K ). Therefore, any rational curve
can be properly parametrized. �



The notion of properness can also be stated algebraically in terms
of fields of rational functions. From Theorem 6.2.3 we deduce that
a rational parametrization P(t) is proper if and only if the induced
monomorphism ϕP (see Remark to Theorem 8.1.6)

ϕP : K (C) −→ K (t)
R(x , y) 7−→ R(P(t)).

is an isomorphism. Therefore, P(t) is proper if and only if the
mapping ϕP is surjective, that is, if and only if
ϕP(K (C)) = K (P(t)) = K (t). More precisely, we have the
following theorem.

Theorem 8.2.2. Let P(t) be a rational parametrization of a plane
curve C. Then, the following statements are equivalent:

(1) P(t) is proper.

(2) The monomorphism ϕP induced by P is an isomorphism.

(3) K (P(t)) = K (t).



Remark. We have introduced the notion of properness for affine
parametrizations. For projective parametrizations the notion can
be extended by asking the rational map, obtained by homogenizing
the projective parametrization, from P1(K ) onto the curve to be
birational. Moreover, if C is an irreducible affine curve and C? is its
projective closure, then K (C) = K (C?). Thus, taking into account
Theorem 8.2.2. one has that the properness of affine and
projective parametrizations are equivalent.



Now, we characterize proper parametrizations by means of the
degree of the corresponding rational curve. To state this result, we
first introduce the notion of degree of a parametrization.

Definition 8.2.2. Let χ(t) ∈ K (t) be a non-zero rational function
in reduced form. If χ(t) is not zero, the degree of χ(t) is the
maximum of the degrees of the numerator and denominator of
χ(t). If χ(t) is zero, we define its degree to be −1. We denote the
degree of χ(t) as deg(χ(t)).
Rational functions of degree 1 are called linear. �

Obviously the degree is multiplicative with respect to the
composition of rational functions. Furthermore, invertible rational
functions are exactly the linear rational functions.

Definition 8.2.3. We define the degree of a rational affine
parametrization P(t) = (χ1(t), χ2(t)) as the maximum of the
degrees of its rational components; i.e.

deg(P(t)) = max {deg(χ1(t)), deg(χ2(t))} .



Lemma 8.2.3. Let P(t) be a proper parametrization of a rational
affine plane curve C, and let P ′(t) be any other rational
parametrization of C. Then

(1) there exists a rational function R(t) ∈ K (t) \ K such that
P ′(t) = P(R(t));

(2) P ′(t) is proper if and only if there exists a linear rational
function L(t) ∈ K (t) such that P ′(t) = P(L(t)).

Proof: (1) We consider the following diagram

A1(K )

P
- C ⊂ A2(K )

P−1 ◦ P ′ P ′

@
@

@
@

@
@@I

6

A1(K )

Then, since P is a birational mapping, it is clear that
R(t) = P−1(P ′(t)) ∈ K (t).



(2) If P ′(t) is proper, then from the diagram above we see that
ϕ = P−1 ◦ P ′ is a birational mapping from A1(K ) onto A1(K ).
Hence, by Theorem 6.2.3 one has that ϕ induces an automorphism
ϕ̃ of K (t) defined as:

ϕ̃ : K (t) −→ K (t)
t 7−→ ϕ(t).

Therefore, since K -automorphisms of K (t) are the invertible
rational functions (see e.g. [Wae70]), we see that ϕ̃ is our linear
rational function.
Conversely, let ψ be the birational mapping from A1(K ) onto
A1(K ) defined by the linear rational function L(t) ∈ K (t). Then, it
is clear that P ′ = P ◦ ψ : A1(K )→ C is a birational mapping, and
therefore P ′(t) is proper. �



The proofs of the following statements are technical, and we omit
them here. But they are given in the Lecture Notes.

Theorem 8.2.5. Let C be a rational affine curve defined over K
with defining polynomial f (x , y) ∈ K [x , y ], and let
P(t) = (χ1(t), χ2(t)) be a parametrization of C.
Then P(t) is proper if and only if

deg(P(t)) = max{degx(f ), degy (f )}.

Furthermore, if P(t) is proper, then deg(χ1(t))=degy (f ), and
deg(χ2(t))=degx(f ).

The next corollary follows from Theorem 8.2.5 and Lemma 8.2.3.

Corollary. Let C be a rational affine plane curve defined by
f (x , y) ∈ K [x , y ]. Then the degree of any rational parametrization
of C is a multiple of max{degx(f ), degy (f )}.



Example 8.2.1. We consider the rational quintic C defined by the
polynomial f (x , y) = y5 + x2y3 − 3 x2y2 + 3 x2y − x2. Theorem
8.2.5 ensures that any rational proper parametrization of C must
have a first component of degree 5, and a second component of
degree 2. It is easy to check that

P(t) =

(
t5

t2 + 1
,

t2

t2 + 1

)
parametrizes properly C. Note that f (P(t)) = 0.



8.3 Parametrization by Lines

–1

–0.5

0.5

1

y

–2.5 –2 –1.5 –1 –0.5 0.5x

Figure 8.2: Ellipse x2 + 2x + 2y2 = 0 and pencil H(t)

We start with the simple case of irreducible conics.

f (x , y) = f2(x , y) + f1(x , y) + f0(x , y)

assume w.l.o.g. that C passes through the origin, so f0(x , y) = 0.
Let H(t) be the linear system of lines through the origin, the
elements of H(t) being parametrized by their slope t. So the
defining polynomial of H(t) is h(x , y , t) = y − tx .



intersection points of a generic element of H(t) and C:{
y = tx
f (x , y) = 0

Solve in the variables x , y . We get f2(x , tx) = −f1(x , tx),
and further x2 · f2(1, t) = −x · f1(1, t).
So the solution points are

P = (0, 0) and Q =

(
− f1(1, t)

f2(1, t)
,− t · f1(1, t)

f2(1, t)

)
.



Note that f1(x , y) is not identically zero, since C is an irreducible
curve. Therefore, Q depends on the parameter t. Furthermore, the
affine point Q is not reachable by at most two particular values of
t, namely the roots of the quadratic form f2(x , y). Thus, for all
but finitely many values of t ∈ K , H(t) and C intersects exactly at
two different affine points (see Figure 8.2). The intersection point
Q depends rationally on the parameter of t of H(t), and it yields
the desired parametrization of the conic.
So we have proved the following theorem.

Theorem 8.3.1. The irreducible projective conic C defined by the
polynomial F (x , y , z) = f2(x , y) + f1(x , y)z (fi a form of degree i ,
resp.), has the rational parametrization

P(t) = (−f1(1, t),−tf1(1, t), f2(1, t)).

In this situation, using the previous theorem and making a suitable
change of coordinates, one may derive the following
parametrization algorithm for conics.



Algorithm CONIC-PARAMETRIZATION.
Given the defining polynomial F (x , y , z) of an irreducible projective
conic C, the algorithm computes a rational parametrization.

1. Compute the homogeneous components f2, f1, f0 of F (x , y , 1).

2. If (0 : 0 : 1) ∈ C then return
P(t) = (−f1(1, t) : −tf1(1, t) : f2(1, t)).

3. Compute a point (a : b : 1) ∈ C.

4. g(x , y) = F (x + a, y + b, 1). Let g2(x , y) and g1(x , y) be the
homogeneous components of g(x , y) of degree 2 and 1,
respectively.

5. Return
P(t) = (−g1(1, t) + ag2(1, t) : −tg1(1, t) + bg2(1, t) : g2(1, t)).



Remark. Note that, because of the geometric construction, the
output parametrization of algorithm conic-parametrization is
proper.
Moreover, if P?,z(t) is the affine parametrization of C?,z derived
from P(t), then its inverse can be expressed as

P−1?,z (x , y) =
y − b

x − a
.

Similary for C?,y and C?,z



Example 8.3.1.: Let C be the ellipse defined by
f (x , y) = x2 + 2y2 − z2.
(0 : 0 : 1) is not on C.
We take a point on C, for instance (1 : 0 : 1) (Step 3).
Step 4 yields g(x , y) = x2 + 2x + y2 (see Figure 8.2).
Then, a parametrization of C is

P(t) = (−1 + 2 t2 : −2 t : 1 + 2 t2) .

In the affine plane (z = 1) the corresponding parametrization of
the ellipse is

P(t) =
(−1 + 2 t2

1 + 2 t2
,
−2 t

1 + 2 t2
)
.

The rational inverse of the parametrization is then

P−1(x , y) =
y

x − 1
.

And indeed,

P−1(P(t)) =
(−2t)/(1 + 2t2)

(−1 + 2t2)/(1 + 2t2) − 1
=
−2t

−2
= t .



Obviously, this approach can be immediately generalized to the
situation where we have an irreducible projective curve C of degree
d with a (d − 1)–fold point P. W.l.o.g. we consider that
P = (0 : 0 : 1), so the defining polynomial of C is of the form

F (x , y , z) = fd(x , y) + fd−1(x , y)z

(fi a form of degree i , resp.). Of course, there can be no other
singularity of C, since otherwise the line passing through the two
singularities would intersect C more than d times.

As above, we consider the linear system of lines H(t) through
(0 : 0 : 1). Intersecting C with an element of H we get the origin
as an intersection point of multiplicity at least d − 1. Reasoning as
above, one has that since C is irreducible for all but finitely many
values of t, P is an intersection point of multiplicity at most d − 1.
Thus, by Bézout’s Theorem, we must get exactly one more
intersection point Q depending rationally on the value of t. So the
coordinates of Q are polynomials in t, in fact

Q = (−fd−1(1, t) : −t · fd−1(1, t) : fd(1, t)).

This is a rational parametrization of the curve C.



Theorem 8.3.2. Let C be an irreducible projective curve of degree
d defined by the polynomial F (x , y , z) = fd(x , y) + fd−1(x , y)z (fi
a form of degree i , resp.), i.e. having a (d − 1)–fold point at
(0 : 0 : 1). Then C is rational and a rational parametrization is

P(t) = (−fd−1(1, t),−tfd−1(1, t), fd(1, t)).

Applying the previous theorems, one may derive an algorithm for
parametrizing by lines. For this purpose, one just has to move the
base point of the pencil of lines to the origin. More precisely, one
has the following algorithm.



Algorithm PARAMETRIZATION-BY-LINES.
Given the defining polynomial F (x , y , z) of an irreducible projective
curve C of degree d > 1, having a (d − 1)–fold point, the algorithm
computes a rational parametrization of C.

1. Compute the (d − 1)–fold point P of C; if d = 2, take any
point P on C. W.l.o.g., perhaps after renaming the variables,
let P = (a : b : 1).

2. g(x , y) := F (x + a, y + b, 1). Let gd(x , y) and gd−1(x , y) be
the homogeneous components of g(x , y) of degree d and
d − 1, respectively.

3. Return P(t) = (−gd−1(1, t) + agd(1, t) :
−tgd−1(1, t) + bgd(1, t) : gd(1, t)).



Remark. Note that, because of the underlying geometric
construction, the parametrization computed by algorithm
PARAMETRIZATION-BY-LINES is proper. Furthermore, if P?,z(t)
is the affine parametrization of C?,z derived from P(t), then its
inverse can be computed as follows. W.l.o.g., perhaps after
renaming the variables, let P = (a : b : 1) be the singularity of the
curve. Then

P−1?,z (x , y) =
y − b

x − a

is the inverse of P.



Example 8.3.2.: Let C be the affine quartic curve defined by

f (x , y) = 1 + x − 15 x2 − 29 y2 + 30 y3 − 25 xy2 + x3y
+35 xy + x4 − 6 y4 + 6 x2y .
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C has an affine triple point at (1, 1).
In Step 2 we compute the polynomial

g(x , y) = 5 x3 + 6 y3 − 25 xy2 + x3y + x4 − 6 y4 + 9 x2y .

From the homogeneous forms of g(x , y), in Step 3 we get the
rational parametrization of C

P(t) =(
4+6 t3−25 t2+8 t+6 t4

−1+6 t4−t , 4 t+12 t4−25 t3+9 t2−1
−1+6 t4−t

)
.

Furthermore, the inverse of the parametrization is given by

P−1(x , y) =
y − 1

x − 1
.



Example 8.3.3.: Let C be the affine quintic curve defined by

f (x , y) = −75
8 x2y2 + 125

8 x3y − 1875
256 x4 + x + y4 + 625

16 x3y2

−9375
256 x4y − 125

8 x2y3 + 3125
256 x5 + y5.

C has a quadruple point at (4 : 5 : 0).
In Step 4.1. we compute the polynomial

g(x , y) = 6400y4 + 1024x4 + 256y5 + 256xy4 + 5120xy3

And, determining the homogeneous forms of g(x , y), in Step
4.1.2., we get the rational parametrization of C

P(t) =

(
−4

t4 (t + 1)

25 t4 + 20 t3 + 4
,
t
(
20 t4 + 15 t3 + 4

)
25 t4 + 20 t3 + 4

)
.

Furthermore, taking into account the remark to the algorithm we
have that

P−1(x , y) = y − 5

4
x .



Definition 8.3.1. The irreducible projective curve C is
parametrizable by lines if there exists a linear system of curves H
of degree 1 (i.e. a pencil of lines) such that

(1) dim(H) = 1,

(2) the intersection of a generic element in H and C contains a
non–constant point whose coordinates depend rationally on
the free parameter of H.

We say that an irreducible affine curve is parametrizable by lines if
its projective closure is parametrizable by lines. �

Theorem 8.3.3. Let C be an irreducible projective plane curve of
degree d > 1. The following statements are equivalent:

(1) C is parametrizable by a pencil of lines H(t).

(2) C has a point of multiplicity d − 1 which is the base point of
H(t).



8.4 Parametrization by Adjoint Curves

Definition 8.4.1. We say that a linear system of curves H
parametrizes C if it holds that

(1) dim(H) = 1,

(2) the intersection of a generic element in H and C contains a
non–constant point whose coordinates depend rationally on
the free parameter in H,

(3) C is not a common component of any curves in H.



Lemma 8.4.1. Let H(t) be a linear system of curves
parametrizing C, then there exists only one non–constant
intersection point P(t) of H(t) and C depending on t, and it is a
proper parametrization of C.

Theorem 8.4.2. Let F (x , y , z) be the defining polynomial of C,
and let H(t, x , y , z) be the defining polynomial of a linear system
H(t) parametrizing C. Then, the proper parametrization P(t)
generated by H(t) is the solution in P2(K (t)) of the system of
algebraic equations

ppt(resy (F ,H)) = 0
ppt(resx(F ,H)) = 0

}
.



Definition 8.4.2. We say that a projective curve C′ is an adjoint
curve of the irreducible C if and only if the following holds:

(1) if P is a singular point of C, then multP(C′) ≥ multP(C)− 1,

(2) if P is a neighboring singular point of C, then
multP(C′) ≥ multP(C)− 1.

We say that C′ is an adjoint curve of degree k of C, if C′ is an
adjoint of C and deg(C′) = k . �

All algebraic conditions required in the definition of adjoint curve
are linear. Therefore if one fixes the degree, the set of all adjoint
curves of C is a linear system of curves. In fact, if C has only
ordinary singularities, then the set of adjoint curves of degree k of
C is the linear system generated by the effective divisor∑

P∈Sing(C)

(multP(C)− 1)P.

Definition 8.4.3. The set of all adjoints of C of degree k , k ∈ N,
is called the system of adjoints of C of degree k . We denote this
system by Ak(C). �



Theorem 8.4.6. Let S ⊂ C \ Sing(C) be such that #(S) = d − 3.
Then Ad−2(C) ∩H(d − 2,

∑
P∈S P) parametrizes C.

Algorithm PARAMETRIZATION-BY-ADJOINTS.
Given the defining polynomial F (x , y , z) of a rational irreducible
projective curve C of degree d the algorithm computes a rational
parametrization of C.

1. If d ≤ 3 or Sing(C) contains only one point of multiplicity
d − 1 apply algorithm parametrization–by–lines.

2. Compute the defining polynomial of Ad−2(C).

3. Choose a set S ⊂ (C \ Sing(C)) such that #(S) = d − 3.

4. Compute the defining polynomial H of
H = Ad−1(C) ∩H(d − 2,

∑
P∈S P).

5. Return the solution in P2(K (t)) of
{ppt(resy (F ,H)) = 0, ppt(resx(F ,H)) = 0}.



Example 8.4.1: Cardioid C:
f (x , y) = (x2 + 4y + y2)2 − 16(x2 + y2).
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C has a double point at the origin (0, 0) as the only affine
singularity. But if we move to the associated projective curve C∗
defined by the homogeneous polynomial

F (x , y , z) = (x2 + 4yz + y2)2 − 16(x2 + y2)z2,

we see that the singularities of C∗ are

O = (0 : 0 : 1), P1,2 = (1 : ±i : 0).

P1,2 is a family of conjugate algebraic points on C∗. All of these
singularities have multiplicity 2, so the genus of C∗ is 0, i.e. it can
be parametrized. So also the affine curve C is parametrizable.



In order to achieve a parametrization, we need a simple point on
C∗. Intersecting C∗ by the line x = 0, we get of course the origin
as a multiple intersection point. The other intersection point is

Q = (0 : −8 : 1).

So now we construct the system H of curves of degree 2, having
O,P1,2 and Q as base points of multiplicity 1. The full system of
curves of degree 2 is of the form

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz

for arbitrary coefficients a1, . . . , a6.

Requiring that O be a base point leads to the linear equation

a3 = 0.

Requiring that P1,2 should be base points of H leads to the
equations

a4 = 0, a1 − a2 = 0 .

Finally, to make Q a base point we have to satisfy

64a2 + a3 − 8a6 = 0.



This leaves exactly 2 parameters unspecified, say a1 and a5. Since
curves are defined uniquely by polynomials only up to a nonzero
constant factor, we can set one of these parameters to 1. Thus,
the system H depends on 1 free parameter a1 = t, and its defining
equation is

H(x , y , z , t) = tx2 + ty2 + xz + 8tyz .

The affine version is defined by

h(x , y , t) = tx2 + ty2 + x + 8ty .



Now we determine the free intersection point of H and C. The
non–constant factors of resx(f (x , y), h(x , y , t)) are

y2,
y + 8,
(256t4 + 32t2 + 1)y + (2048t4 − 128t2).

The first two factors correspond to the affine base points of the
linear system H, and the third one determines the y–coordinate of
the free intersection point depending rationally on t.



Similarly, the non–constant factors of resy (f (x , y), h(x , y , t)) are

x3,
(256t4 + 32t2 + 1)x + 1024t3.

The first factor corresponds to the affine base points of the linear
system H, and the second one determines the x–coordinate of the
free intersection point depending rationally on t.

So we have found a rational parametrization of C, namely

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.



In the previous example we were lucky enough to find a rational
simple point on the curve, allowing us to determine a rational
parametrization over the field of definition Q. In fact, there are
methods for determining whether a curve of genus 0 has rational
simple points, and if so find one. We cannot go into more details
here, but we refer the reader to [SeWi97].

From the work of Noether, Hilbert, and Hurwitz we know that it is
possible to parametrize any curve C of genus 0 over the field of
definition K , if deg(C) is odd, and over some quadratic extension
of K , if deg(C) is even. An algorithm which actually achieves this
optimal field of parametrization is presented in [SeWi97].
Moreover, if the field of definition is Q, we can also decide if the
curve can be parametrized over R, and if so, compute a
parametrization over R.

Space curves can be handled by projecting them to a plane along a
suitable axis, parametrizing the plane curve, and inverting the
projection.


