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Abstract This paper presents the algebro-geometric method for computing explicit formula solutions

for algebraic differential equations (ADEs). An algebraic differential equation is a polynomial relation

between a function, some of its partial derivatives, and the variables in which the function is defined.

Regarding all these quantities as unrelated variables, the polynomial relation leads to an algebraic

relation defining a hypersurface on which the solution is to be found. A solution in a certain class of

functions, such as rational or algebraic functions, determines a parametrization of the hypersurface

in this class. So in the algebro-geometric method the author first decides whether a given ADE

can be parametrized with functions from a given class; and in the second step the author tries to

transform a parametrization into one respecting also the differential conditions. This approach is

relatively well understood for rational and algebraic solutions of single algebraic ordinary differential

equations (AODEs). First steps are taken in a generalization to systems and to partial differential

equations.

Keywords Algebraic differential equation, exact solution, parametrization of curves.

1 Introduction

In this survey we are concerned with an algebraic and geometric method for determining
symbolic solutions to algebraic differential equations (ADEs). An ADE is a polynomial relation
between a function y(x1, x2, · · · , xn), some of its derivatives and the variables x1, x2, · · · , xn,

F

(
x1, x2, · · · , xn, y, · · · ,

∂y

∂xi
, · · · ,

∂ky

∂xj1 , ∂xj2 , · · · , xjk

, · · ·
)

= 0. (1)

Of course, only finitely many derivatives can actually appear in the polynomial F . The highest
k appearing in (1) is the order of the ADE F = 0. If the total degree of the polynomial F in
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y and its derivatives is 1, we have a linear differential equation. Here we are mainly concerned
with non-linear ADEs of order 1.

In case n = 1 we speak of an algebraic ordinary differential equation (AODE); so there is a
(differential) polynomial F ∈ K(x){y} such that the AODE can be written as

F (x, y, y′, · · · , y(n)) = 0. (2)

F defines the differential equation. Without loss of generality we may consider F to be irre-
ducible. For otherwise we may factor F and solve the AODEs defined by the factors. An AODE
is autonomous iff it is independent of x; i.e., it is of the form

F (y, y′, · · · , y(n)) = 0, (3)

with F ∈ K{y}. If n > 1 we speak of an algebraic partial differential equation (APDE).
We take a computer algebra point of view; i.e., we typically want to compute solution

formulas, not simply numerical values at particular points. For an introduction to computer
algebra in general, and to the algorithmic basis of this project in particular, we refer to [1].

Differential algebra, and in particular differential computer algebra, is investigating and
modeling differential equations in several ways: By differential polynomials, by linear differen-
tial operators, and also by differential Galois theory. Already in the early decades of the 20th
century Janet[2] worked on an elimination theory for partial differential equations. The theory
of differential polynomials was introduced by Ritt[3] and has been vigorously developed since
then. Classical Galois theory, i.e., the theory of automorphism groups of solutions to algebraic
equations, is gradually being extended and applied to the solutions of differentials equations,
e.g., in [4], [5] and [6]. Lie symmetries can often be used for determining solutions; see [7].
AODEs are typically non-linear. There are still no general solution algorithms for such prob-
lems. Special cases are treated, e.g., in [8–11]. The solution methods can also be distinguished
w.r.t. the type of solution they are looking for; e.g., rational, algebraic, or Liouvillian solutions.

First-order AODEs have been studied a lot and there is a variety of solution methods
for special classes of such ODEs. The study of AODEs can be dated back to the work of
Fuchs[12], and Poincaré[13]. In [14], Malmquist studied the class of first-order AODEs having
transcendental meromorphic solutions, and Eremenko revisited later in [15]. By using the
result of Matsuda[16] on classification of differential algebraic function fields without movable
critical points, Eremeko presented an implicit characterization of a degree bound for rational
solutions[17]. In [10], Kovacic solved completely the problem of computing Liouvillian solutions
of second order linear AODEs with rational function coefficients. Kovacic also proposed an
algorithm for determining all rational solutions of a Riccati equation. Hubert[18] found implicit
solutions by computing Gröbner bases.

A new algebro-geometric approach was first introduced by Feng and Gao. In [19, 20] they
provided a polynomial time algorithm for computing rational general solutions of first-order
autonomous AODEs. In [21], Chen and Ma combined an algebro-geometric method with Fuchs’
theorem about first-order AODEs without movable critical point and studied a special kind
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of rational general solutions. In [22–24], Ngô and Winkler extended the algebro-geometric
method to the class of non-autonomous parametrizable first-order AODEs and studied their
rational general solutions. Following this direction, a generalization to the class of higher
order AODEs[25], and even to algebraic partial differential equations[26, 27] has been proposed.
Whereas for general first-order AODEs we still do not have a decision algorithm for the existence
of rational general solutions, we can now decide whether such an AODE has a so-called strong
rational general solution; i.e., a rational general solution in which the transcendental constant
appears rationally. This has recently be shown in [28]. In [29] we computed all rational solutions
of a wide class of first-order AODEs. A practical application of the algebro-geometric method
can be found in [30], where explicit solutions of AODEs give rise to formulas for Zolotarev
polynomials.

Let K be an algebraically closed differential field, with derivation ∂. For brevity, often we
write ′ instead of ∂. The derivation is extended to K(x), the field of rational functions, by
x′ = 1. Furthermore, we extend the derivation to differential polynomials in the differential
variable y over K(x). So we consider variables y(i), i ∈ N, with y = y(0) and for every i ∈ N we
have ∂(y(i)) = y(i+1). The (differential) ring of differential polynomials is denoted by K(x){y}.
An ideal I in K(x){y} is a differential ideal if the derivation does not lead out of I; i.e., if F ∈ I

then also F ′ ∈ I.
According to Ritt[3], Chapter 2, the radical differential ideal {F} generated by the irreducible

differential polynomial F , F ∈ K(x){y}, can be decomposed as

{F} = ({F} : S)︸ ︷︷ ︸
general component

∩ {F, S}︸ ︷︷ ︸
singular component

,

where S is the separant of F ; i.e., the derivative of F w.r.t. y(n), n being the order of F . The
general component {F} : S encodes the conditions F = 0, S �= 0. It is a prime differential ideal,
so it has a generic zero. The singular component {F, S} encodes the conditions F = 0, S = 0.

A function y(x) in an extension field of K(x) satisfying F (x, y, y′, · · · , y(n)) = 0 is called a
solution of the AODE (2). A rational solution is a solution in K(x). A solution of the general
component is called a regular solution, a solution of the singular component is called a singular
solution.

Consider c transcendental over K. A solution y(c) ∈ K(c)(x)\K(x) of (2) is called a general
rational solution. A general rational solution is a generic point of the general component {F} :
S; i.e., the membership problem for {F} : S can be decided by substituting y(c). Compare [3],
Chapter 2.

2 Rational Solutions of AODEs

The study of first-order algebraic ODEs can be dated back to the work of Fuchs[12] and
Poincaré[13]. Malmquist studied the class of first-order AODEs having transcendental mero-
morphic solutions in [14], and later Eremenko revisited this problem. By using the result of
Matsuda[16] on classification of differential algebraic function fields without movable critical
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points, Eremenko[17] presented a theoretical consideration on a degree bound of rational solu-
tions. The problem of finding closed form solutions of first-order AODEs has been considered
in several papers. Kovacic[10] solved completely the problem of computing Liouvilian solutions
of a second-order linear ODE with rational function coefficients. He also proposed an algorithm
for determining all rational solutions of a Riccati equation. Hubert[18] found implicit solutions
by computing Gröbner bases.

In this section we deal with the problem of deciding the existence of rational solutions of
AODEs of order 1,

F (x, y, y′) = 0 (4)

over an algebraically closed field K of characteristic 0. As the sole additional requirement we
need to be able to parametrize algebraic curves (or surfaces) over K. If the AODE has rational
solutions, we want to find a rational general solution; i.e., a rational solution containing a
transcendental constant c.

Example 1 Consider the non-autonomous AODE over Q

F ≡ y′2 + 3y′ − 2y − 3x = 0.

A general solution is y = 1
2 ((x + c)2 + 3c). The separant of F is S = 2y′ + 3. So the singular

solution of F is y = − 3
2x − 9

8 .
In their seminal papers [19, 20] Feng and Gao introduced the algebro-geometric method.

They related an autonomous AODE of order 1 to a plane algebraic curve, and a rational solution
of the AODE to a proper rational parametrization of this curve. So if the differential equation
has a rational solution, the corresponding curve must be rationally parametrizable. Using
the fact that all proper rational parametrizations of an algebraic plane curve are related by
Möbius transformations and citing the strict degree bounds of parametrizations derived in [31],
they finally decide whether this curve has a parametrization whose second component is the
derivative of the first, thus deciding the existence of a rational solution of the AODE.

An algebraic variety V is the zero locus of a set of (defining) polynomials, or of the ideal I

generated by these polynomials. Hilbert’s Basis Theorem guarantees that an algebraic variety
can always be defined by finitely many polynomials. A (rational) parametrization of V is a
rational map P from a full (affine, projective) space onto V ; i.e., V = im(P) (Zariski closure).
A variety having a rational parametrization is called unirational; and rational if P has a rational
inverse.

For example, the singular cubic y2 − x3 − x2 = 0 has the rational, in fact polynomial,
parametrization x(t) = t2 − 1, y(t) = t3 − t. The inverse of this parametrization is given by
t = y/x. So this is a rational curve.
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A parametrization of a variety is a generic point of the variety; i.e., a polynomial vanishes on
the variety if and only if it vanishes on this generic point. Exactly the irreducible varieties have
a generic point, so only irreducible varieties can be rational. An irreducible plane algebraic
curve is rational if and only if it is of genus 0. A rationally invertible parametrization P is
called a proper parametrization. As a consequence of Lüroth’s Theorem (see [32], Chap. 10) a
plain curve can be rationally parametrized if and only if it can be properly parametrized. The
same holds for surfaces in 3-space because of Castelnuovo’s Theorem. But for hypersurfaces in
higher dimension this is not the case, see [33]. All proper parametrizations of a plane algebraic
curve are related by Möbius transformations, i.e., birational maps of degree 1 of the form
t �→ (ut + v)/(wt + z). For details on parametrizations of algebraic curves we refer to [34].

For a proper rational parametrization P(t) = (r(t), s(t)) of a plain algebraic curves we
have exact degree bounds; see [31]. Based on these bounds, Feng and Gao observed that a
rational solution of the autonomous order-1 AODE F (y, y′) = 0 corresponds to a proper ra-
tional parametrization of the algebraic curve F (y, z) = 0. Conversely, from a proper rational
parametrization (r(t), s(t)) of the curve F (y, z) = 0 we get a rational solution of the AODE
F (y, y′) = 0 if and only if there is a linear rational function L(t) such that r(L(t))′ = s(L(t)).
Such a transformation exists if and only if s(t)/r′(t) is either a constant of a quadratic poly-
nomial with a double root a(t − b)2. If L(t) exists, then a rational solution of F (y, y′) = 0 is
y = r(L(x)). A rational general solution of F (y, y′) = 0 is then given by y = r(L(x + c)), for a
transcendental constant c.

Example 2 (a) Consider the autonomous order-1 AODE F (y, y′) = (y′)2 − y3 − y2 = 0.
To this differential equation we associate the algebraic equation F (y, z) = 0. This algebraic
equation defines the singular cubic, which is parametrized by (r(t), s(t)) = (t2−1, t3−1). There
is no linear transformation such that the second component becomes the derivative of the first.
So this AODE has no general rational solution. However, it does have the singular rational
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solutions y = 0 or y = −1.
(b) Consider the autonomous AODE F (y, y′) = (y′)3 − 27y2 − 54y − 27 of order 1. The

associated algebraic curve is rationally parametrized by P(t) = (r(t), s(t)), where

r(t) =
19t3 − 12t2 − 6t − 1

(2t + 1)3
, s(t) =

27t2

(2t + 1)2
.

But this curve is also parametrized by P̃(t) = (r̃(t), s̃(t)), where

r̃(t) = t3 +
9
2
t2 +

27
4

t +
19
8

, s̃(t) =
3
4
(2t + 3)2 ,

so that the second component is the derivative of the first. Indeed, s(t)/r′(t) = a(t − b)2 =
4/3(t + 1/2)2. The Möbius transformation t �→ (abt − 1)/(at) maps P to P̃ . So a rational
solution is

y(x) = r

(
abx − 1

ax

)
= x3 +

9
2
x2 +

27
4

x +
19
8

,

and a general rational solution is ŷ = y(x + c).

Now let us drop the assumption that the AODE is autonomous; so we are considering (4),
the non-autonomous AODE of order 1. The algebro-geometric method can be applied to this
situation in two different ways, which we describe in the sequel.
Approach 1: First, we could associate with the AODE F (x, y, y′) = 0 an algebraic surface
in A

3(K) defined by F (x, y, z) = 0 and relate rational solutions of the former with rational
parametrizations of the latter. This approach has been pursued in [22, 23].

We assume that the solution surface F (x, y, z) = 0 is a rational algebraic surface, i.e.,
rationally parametrized by

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)) .

Then P(s, t) creates a rational solution of F (x, y, y′) = 0 if and only if we can find two rational
functions s(x) and t(x) which solve the following associated system:

s′ =
f1(s, t)
g(s, t)

, t′ =
f2(s, t)
g(s, t)

, (5)

where
f1(s, t) =

∂χ2(s, t)
∂t

− χ3(s, t) · ∂χ1(s, t)
∂t

,

f2(s, t) = χ3(s, t) · ∂χ1(s, t)
∂s

− ∂χ2(s, t)
∂s

,

g(s, t) =
∂χ1(s, t)

∂s
· ∂χ2(s, t)

∂t
− ∂χ1(s, t)

∂t
· ∂χ2(s, t)

∂s
.

There is a one-to-one correspondence between rational general solutions of the AODE F (x, y, y′)
= 0 and rational general solutions of its associated system. In particular, Theorem 3.15 in [22]
states that if (s(x), t(x)) is a rational general solution of the associated system, then

y = χ2(s(2x − χ1(s(x), t(x))) , t(2x − χ1(s(x), t(x)))) (6)
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is a rational general solution of (4). This associated system is autonomous, of order 1, and of
degree 1 in the derivatives of the parameters s and t. Every non-trivial rational solution R(x) =
(s(x), t(x)) of the associated system implicitly defines a curve G(s, t) s.t. G(s(x), t(x)) = 0. By
differentiation and taking into account (5), we get that the polynomial Gs · f1 +Gt · f2 vanishes
at R(x); so Gs ·f1 +Gt ·f2 ∈ 〈G〉. Such curves G(s, t) are called invariant algebraic curves. The
irreducible factors of an invariant curve are also invariant curves. A more detailled analysis
can be found in [23]. In the generic case, in which the associated system has no dicritical
points, Carnicer[35] gave an upper bound for irreducible invariant algebraic curves derived from
the degree of the associated system (5). A rational parametrization of an invariant algebraic
curve presents a candidate for a rational solution of the associated system, and therefore of
the original AODE. A necessary and sufficient condition for a rational invariant algebraic curve
to be a rational solution curve is given in [23], Theorem 3.5. Suppose s(x) �= 0 (otherwise
proceed analogously with t(x); not both s and t can be constant). Then (s(T (x)), t(T (x))) is
the rational solution of (5) corresponding to G, where the reparametrization T is the solution
of

T ′ =
1

s′(T )
· f1(s(T ), t(T ))

g(s(T ), t(T ))
.

This transformation T is always a Möbius transformation.

Example 1 (continued) We are considering the differential equation

F (x, y, y′) ≡ y′2 + 3y′ − 2y − 3x = 0.

The solution surface z2 + 3z − 2y − 3x = 0 has the parametrization

P(s, t) =
(

t

s
+

2s + t2

s2
, −1

s
− 2s + t2

s2
,

t

s

)
.

This is a proper parametrization and its associated system is

s′ = st, t′ = s + t2.

So f1 = st, f2 = s + t2. An irreducible invariant algebraic curve of this system is, for example,
G(s, t) = s2 + ct2 + 2cs. Indeed, Gsf1 + Gtf2 = 2t · G. Now, G(s, t) = s2 + ct2 + 2cs = 0
depends on a transcendental parameter c, and it can be parametrized by

Q(x) =
(
− 2c

1 + cx2
,− 2cx

1 + cx2

)
.

The differential equation defining the reparametrization is T ′ = 1. Hence, T (x) = x. So the
rational solution in this case is

s(x) = − 2c

1 + cx2
, t(x) = − 2cx

1 + cx2
.

Since G(s, t) contains a transcendental constant, the above solution is a rational general solution
of the associated system. Therefore, the rational general solution of F (x, y, y′) = 0 is

y =
1
2
x2 +

1
c
x +

1
2c2

+
3
2c

,
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which, after a change of parameter, can be written as

y =
1
2
((x + c)2 + 3c).

In most cases this approach can compute a general rational solution if it exists; but the
dicritical case presents a problem. So Approach 1 is not a decision algorithm.

Approach 2: Alternatively, we could associate with the AODE F (x, y, y′) = 0 an algebraic
curve in A

2(Q(x)) by taking the coefficient field to be Q(x); then again we relate rational
solutions of the AODE with rational parametrizations of the curve. Approach 2 is developed
in [28].

For a given first-order AODE F (x, y, y′) = 0 over K, we consider the corresponding algebraic
curve CF defined by the algebraic equation F (x, y, z) = 0 over K(x), i.e., we consider the
algebraic equation F (y, z) = 0, with F (y, z) ∈ K(x)[y, z].

We change the problem slightly. The arbitrary constant c might appear algebraically in
a general rational solution. But now we want rational general solutions y(x), in which the
arbitrary constant c appears rationally. Such a solution is called a strong rational general
solution. The rational general solutions computed in Examples 1 and 2 are in fact strong
rational general solutions. But the AODE

x3y′3 − (3x2y − 1)y′2 + 3xy2y′ − y3 + 1 = 0

has the rational general solution y(x) = cx + (c2 + 1)
1
3 , which is not strong. The curve CF has

genus 1. So this AODE does not have a strong rational general solution.
The existence of a strong rational general solution implies the existence of a rational

parametrization of the algebraic curve CF with coefficients in K(x); i.e., without algebraically
extending the coefficient field K(x) to K(x). We call such a parametrization an optimal
parametrization. In [28] we prove that if the AODE F (x, y, y′) = 0 has a strong rational
solution, then CF is rational and it can be parametrized without any algebraic field extension.

Given an optimal proper parametrization P(t) = (p1(t), p2(t)) of the curve CF , we can turn
the AODE F (x, y, y′) = 0 into a quasi-linear associated differential equation of the form

ω′ = a0(x) + a1(x)ω + a2(x)ω2 , with ai ∈ K(x),

i.e., a Riccati equation. The proof of this theorem depends on a result by Fuchs[12]: If a
quasi-linear ODE y′ = f(x, y), where f ∈ K(x, y), has a rational general solution, then it must
be a Riccati equation. In case the parametrization is not optimal, it contains an algebraic
function in x. This algebraic function then also appears in the associated quasi-linear ODE,
and Fuchs’ theorem would not be applicable. There is a 1-1 correspondence between rational
general solutions of the original AODE and rational general solutions of the associated Riccati
equation; in particular, if ω(x) is a rational general solution of the associated equation, the
y(x) = p1(x, ω(x)) is a rational general solution of the original AODE. Schwarz[7] showed
that if a Riccati equation has 3 special rational solutions, then is has a strong rational general



264 WINKLER FRANZ

solution. All these considerations finally lead to the result (Cor. 5.5 in [28]): If a parametrizable
first-order AODE has a rational general solution, then it has a strong rational general solution.

In case a2(x) = 0, the associated differential equation is linear, and it can be solved by
integration. In case a2(x) �= 0, it is a classical Riccati equation and it can be solved by
Kovacic’s algorithm described in [10].

Example 3 (Example 1.537 in the collection of Kamke[36]) Consider the AODE

F (x, y, y′) = (xy′ − y)3 + x6y′ − 2x5y = 0.

The associated curve CF defined by F (x, y, z) = 0 can be parametrized as

P(t) =
(
− t3x5 − t2x6 + (t − x)3

t3x5
, −2t3x5 − 2t2x6 + (t − x)3

t3x6

)
.

Therefore, the associated differential equation w.r.t. P is

ω′ =
1
x2

ω(2ω − x),

which is a Riccati equation. Kovacic’s algorithm gives us the rational general solution ω(x) =
x

1+cx2 . Hence, the original AODE F (x, y, y′) = 0 has the strong rational general solution

y(x) = cx(x + c2).

Approach 2 provides a full decision algorithm for the existence of a strong rational general
solution of a parametrizable AODE; 64 percent of all the first-order ODEs in the collection of
Kamke fall into this class. In the positive case, we can actually determine a strong rational
general solution.

The algebro-geometric approach for AODEs has also been applied to other problems, for
which we might want to decide the existence of rational solution; examples are AODEs of
higher order[25], or 1-dimensional systems of AODEs[37]. Recently we have investigated the
problem of determining all rational solutions of an AODE of order 1; cf. [29]. For two classes of
AODEs (parametrizable and maximally comparable) we actually give algorithms for computing
all rational solutions. Note that in the collection of Kamke[36] there are only 3 AODEs of order
1 (1.372, 1.545, 1548) which are neither parametrizable, nor maximally comparable. These are
all autonomous and non-parametrizable, and hence cannot have a rational solution.

3 Algebraic Solutions of AODEs

Aroca, et al.[38] presented a polynomial time algorithm for computing algebraic general
solutions of autonomous AODEs F (y, y′) = 0. Vo and Winkler (in [39]) modified Approach 1
of Section 2 in order to compute algebraic general solutions of non-autonomous parametrizable
AODEs F (x, y, y′) = 0. But lacking a degree bound for such algebraic solutions, they need to
specify a bound for the algebraic extension degree.



ALGEBRAIC SOLUTIONS OF AODEs 265

As in Section 2 one reduces the problem of solving (2), for n = 1, to an associated planar
rational system of the form

s′ = M(s, t), t′ = N(s, t), (7)

where M and N are rational functions in s and t. If the parametrizable AODE F (x, y, y′) = 0
has an algebraic general solution, then its associated system w.r.t. a proper parametriza-
tion has a rational first integral; i.e., a rational function W (s, t) s.t. M ∂W

∂s + N ∂W
∂t = 0; cf.

Proposition 3 in [39]. Furthermore, by Corollary 1 in [39], if W = P
Q is a reduced rational

first integral of the associated system and (s(x), t(x)) is an algebraic general solution, then
s(x) is an algebraic general solution of the autonomous first order AODE F1(s, s′) = 0, where
F1(s, r) := rest(P (s, t) − cQ(s, t), rM2(s, t) − M1(s, t)); analogously for t(x).

We still need to bound the degree of the algebraic solution. This is achieved in Theorem 5
of [39], which says that if F (x, y, y′) = 0 has an algebraic solution with minimal polynomial of
degree less or equal to n, then the associated system has a rational first integral of degree m(n);
an explicit formula for m(n) is given. So we can decide the existence of an algebraic solution
having extension degree less or equal to n.

Example 4 (see [39]) Consider the differential equation

4x(x − y)y′2 + 2xyy′ − 5x2 + 4xy − y2 = 0. (8)

The solution surface of the differential equation is rational. It is parametrized by the rational
map

P(s, t) :=
(

s,− t2 − 5ts + 5s2

s
,
t2 − 4st + 5s2

2s(t − 2s)

)

The associated system with respect to P is

s′ = 1 , t′ =
t2 − 3s2

2s(t − 2s)
.

If we look for an algebraic general solution y(x) of degree at most n = 2, we need to find a
rational first integral of degree at most m(n) = 32 of the associated system. In this case, the
associated system has the rational first integral W = t2−4st+3s2

s , which is of total degree 2. (This
suggests that our degree bound is not optimal). Thus it has an algebraic solution (s(x), t(x)) :=
(x, t(x, c)), where t(x, c) is a root of the algebraic equation t2 − 4xt + 3x2 − cx = 0. By
applying (6), we see that

y(x) =

√
cx(cx + 1) − 1

c

is an algebraic general solution of the differential equation.

4 Classification of AODEs w.r.t. Transformation Groups

Consider a group of transformations leaving the associated system of an AODE invariant.
We call such a transformation solution preserving. Orbits w.r.t. such a transformation group
contain AODEs of equal complexity in terms of determining rational solutions. In [40, 41] we
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have studied affine and birational transformations and investigated their usefulness within the
algebro-geometric solution method. For instance, it turns out that being autonomous is not an
intrinsic property of an AODE; certain classes contain both autonomous and non-autonomous
AODEs.

The group Ga of affine transformations

L : A
3(K) −→ A

3(K)

v �→

⎛
⎜⎜⎝

1 0 0

b a 0

0 0 a

⎞
⎟⎟⎠ v +

⎛
⎜⎜⎝

0

c

b

⎞
⎟⎟⎠

leaves the associated system of an AODE invariant, and therefore also the rational solvability.
The group Ga defines a group action on AODEs by

Ga ×AODE → AODE
(L, F ) �→ L · F = (F ◦ L−1)(x, y, y′).

Let F be a parametrizable AODE, and L ∈ Ga. For every proper rational parametrization P
of the solution surface F (x, y, z) = 0, the associated system of F (x, y, y′) = 0 w.r.t. P and the
associated system of (L · F )(x, y, y′) = 0 w.r.t. L ◦ P are equal.

Example 5 We consider the AODE from Example 1

F (x, y, y′) ≡ y′2 + 3y′ − 2y − 3x = 0.

We first check whether in the orbit of F there exists an autonomous AODE. For this, we apply
a generic L to F to get

(L · F )(x, y, y′) =
1
a2

y′2 +
3
a
y′ − 2b

a2
y′ − 2

a
y +

2b

a
x − 3x − 3b

a
+

b2

a2
+

2c

a
.

Therefore, for every a �= 0 and b such that 2b − 3a = 0, we get an autonomous AODE. In
particular, for a = 1, b = 3/2, and c = 0 we get

L =

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

1 0 0
3
2

1 0

0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0

0
3
2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

i.e., we obtain

F (L−1(x, y, y′)) ≡ y′2 − 2y − 9
4

= 0.

So by the algorithm of Feng and Gao we may solve this transformed autonomous AODE and
then transform the solution back to the original equation.
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The group Gb of birational transformations from K
3 to K

3 of the form

Φ(u1, u2, u3) =
(

u1,
au2 + b

cu2 + d
,

∂

∂u1

(
au2 + b

cu2 + d

)
+

∂

∂u2

(
au2 + b

cu2 + d

)
· u3

)
,

where a, b, c, d ∈ K[u1] such that ad − bc �= 0, defines a group action on AODE ; we let Φ · F
be the primitive part w.r.t. y and y′ of the numerator of (F ◦ Φ−1)(x, y, y′); see Theorem 3.3
in [41]. These birational transformations leave the associated system of an AODE invariant,
and therefore also the rational solvability.

Example 6 Consider the AODE

F (x, y, y′) = 25x2y′2 − 50xyy′ + 25y2 + 12y4 − 76xy3 + 168x2y2 − 144x3y + 32x4 = 0.

Using the transformation

Φ(u, v, w) =
(

u,
u − 3v

−2u + v
,

−5v

(2u − v)2
+

5u

(2u − v)2
w

)
,

we get the autonomous equation

G(y, y′) = F (Φ−1(x, y, y′)) = y′2 − 4y = 0.

Observe that F cannot be transformed into an autonomous AODE by affine transformations.
The rational general solution y = (x + c)2 of G(y, y′) = 0 is transformed into

y =
x(2(x + c)2 + 1)

(x + c)2 + 3
,

the rational general solution of F (x, y, y′) = 0.

So-called strict equivalence for AODEs of order 1 with coefficients in a finite extension K

of the rational functions over C is considered in [42].

5 Extending the Reach of the Algebro-Geometric Method

In [43] we also considered other types of solutions of autonomous AODEs of order 1. In
particular, we investigate radical solutions. This class of solutions is more general than rational
solutions, but more special than algebraic solutions. We generalize the criterion of Feng and Gao
to this situation; i.e., if P(t) = (r(t), s(t)) is a radical parametrization of the curve F (y, z) = 0
and s(t)/r′(t) has a certain shape, then we can determine a radical general solution of the
AODE F (y, y′) = 0. But this approach does not lead to a decision algorithm for the existence
of a radical solution. Also, in [43] examples are given in which the algebro-geometric method
leads to transcendental general solutions.

AODEs of order higher than 1 are considered in [25, 44]. Many of the ideas in the algebro-
geometric method can be generalized to this situation. But one of the main new problems is that
for hypersurfaces of dimension 3 or more, rationality does not necessarily imply birationality;
cf. [33]. So we loose the important property that a rational solution is a proper parametrization
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and that all proper parametrizations are related by a well-defined group action, such as Möbius
transformations.

First steps have been taken towards extending the algebro-geometric solution method to
algebraic partial differential equations. We consider autonomous APDEs in [26], and systems
of non-autonomous APDEs in [27]. But these first results definitely need further analysis, and
a decision algorithm or even an algorithmic treatment is not in reach.

6 Conclusion

We have seen that the algebro-geometric method for solving algebraic differential equations
is a fruitful approach to actually creating formula solutions for certain kinds of differential
equations. Besides giving a decision method for rational or algebraic autonomous AODEs of
order 1, it also lets us decide whether a parametrizable non-autonomous AODE of order 1
has a general rational solution, which in this case has to be a strong rational general solution.
However, we still do not have a full algorithm for deciding the existence of a rational or algebraic
general solution and in the positive case computing it for an arbitrary AODE of order 1. For a
big class of AODEs of order 1 we can compute all rational solutions. First steps have been taken
towards the treatment of AODEs of higher order, and we have started to create a theoretical
framework for discussing how to determine rational solutions of APDEs.
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[22] Ngô L X C and Winkler F, Rational general solutions of first order non-autonomous parametriz-

able ODEs, J. Symbolic Computation, 2010, 45(12): 1426–1441.
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