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Abstract

Consider an algebraic ordinary differential equation (AODE), i.e. a
polynomial relation between the unknown function and its
derivatives. This polynomial defines an algebraic hypersurface. By
considering rational parametrizations of this hypersurface, we can
decide the rational solvability of the given AODE, and in fact
compute the general rational solution. This method depends
crucially on curve and surface parametrization and the
determination of rational invariant algebraic curves.

We also discuss the extension of this method to non-rational
solutions, and to partial differential equations.



Outline



Solving ADEs — The problem
An algebraic ordinary differential equation (AODE) is given by

F (x , y , y ′, . . . , y (n)) = 0 ,

where F is a differential polynomial in K [x ]{y} with K being a
differential field and the derivation ′ being d

dx .
Such an AODE is autonomous iff F ∈ K{y}.

The radical differential ideal {F} can be decomposed

{F} = ({F} : S)︸ ︷︷ ︸
general component

∩ {F ,S}︸ ︷︷ ︸
singular component

,

where S is the separant of F (derivative of F w.r.t. y (n)).
If F is irreducible, {F} : S is a prime differential ideal; its generic
zero is called a general solution of the AODE
F (x , y , y ′, . . . , y (n)) = 0.

J.F. Ritt, Differential Algebra (1950)
E. Hubert, The general solution of an ODE, Proc. ISSAC 1996



Problem: Rational general solution of AODE of order 1

given: an AODE F (x , y , y ′) = 0, F irreducible in Q[x , y , y ′]

decide: does this AODE have a rational general solution

find: if so, find it

Example: F ≡ y ′2 + 3y ′ − 2y − 3x = 0.
general solution: y = 1

2((x + c)2 + 3c), where c is an arbitrary
constant.
The separant of F is S = 2y ′ + 3. So the singular solution of F is
y = −3

2x −
9
8 .



Rational parametrizations

An algebraic variety V is the zero locus of a (finite) set of
polynomials F , or of the ideal I = 〈F 〉.
A rational parametrization of V is a rational map P from a full
(affine, projective) space covering V; i.e. V = im(P) (Zariski
closure).
A variety having a rational parametrization is called unirational;
and rational if P has a rational inverse.



The singular cubic
y2 − x3 − x2 = 0

has the rational, in fact polynomial, parametrization

x(t) = t2 − 1, y(t) = t3 − t .

So this is a unirational curve.
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I a parametrization of a variety is a generic point or generic
zero of the variety; i.e. a polynomial vanishes on the variety if
and only if it vanishes on this generic point

I so only irreducible varieties can be rational

I a rationally invertible parametrization P is called a proper
parametrization;
every rational curve or surface has a proper parametrization
(Lüroth, Castelnuovo); but not so in higher dimensions

For details on parametrizations of algebraic curves we refer to
J.R. Sendra, F. Winkler, S. Pérez-D́ıaz,
Rational Algebraic Curves – A Computer Algebra Approach,
Springer-Verlag Heidelberg (2008)



Rational solutions of AODEs of order 1
The autonomous case F (y , y ′) = 0
First we concentrate on algebraic and geometric questions:

I A rational solution of F (y , y ′) = 0 corresponds to a proper
(because of the degree bounds) rational parametrization of
the algebraic curve F (y , z) = 0.

I Conversely, from a proper rational parametrization
(f (x), g(x)) of the curve F (y , z) = 0 we get a rational
solution of F (y , y ′) = 0 if and only if there is a linear rational
function T (x) such that f (T (x))′ = g(T (x)).

References:

I R. Feng, X-S. Gao, Proc. ISSAC 2004

I R. Feng, X-S. Gao, JSC 41 (2006)

based on degree bounds derived in

I J.R. Sendra, F. Winkler, Comp.Aided Geom.Design 18 (2001)



The general (non-autonomous) case F (x , y , y ′) = 0
It is now natural to assume that the solution surface F (x , y , z) = 0
is a rational algebraic surface, i.e. rationally parametrized by

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

Then P(s, t) creates a rational solution of F (x , y , y ′) = 0 if and
only if we can find two rational functions s(x) and t(x) which
solve the following associated system:

s ′ =
f1(s, t)

g(s, t)
, t ′ =

f2(s, t)

g(s, t)
, (1)

where f1(s, t), f2(s, t), g(s, t) are rational functions in s, t.

The construction of the associated system and the following
theorem can be found in
L.X.C. Ngô, F. Winkler, JSC, 45/12 (2010)



Theorem
There is a one-to-one correspondence between rational general
solutions of the AODE F (x , y , y ′) = 0 and rational general
solutions of its associated system.

The associated system is

I autonomous

I of order 1

I of degree 1 in the derivatives of the parameters

Lemma
Every non-trivial rational solution of the associated system
corresponds to a rational invariant algebraic curve, i.e. a curve
G (s, t) = 0 satisfying Gs · N1M2 + Gt · N2M1 ∈ 〈G 〉.

In the generic case (assoc. system has no dicritical points) there is
an upper bound for irreducible invariant algebraic curves.



Rational invariant algebraic curves create candidates for rational
solutions of the associated system, and therefore of the original
AODE;
if we can find a linear transformation s.t. the derivation of the first
component is equal to the second.

L.X.C. Ngô, F. Winkler, JSC 46/10, (2011)



Example: Consider the differential equation

F (x , y , y ′) ≡ y ′2 + 3y ′ − 2y − 3x = 0 .

The solution surface z2 + 3z − 2y − 3x = 0 has the
parametrization

P(s, t) =

(
t

s
+

2s + t2

s2
,−1

s
− 2s + t2

s2
,
t

s

)
.

This is a proper parametrization and its associated system is

s ′ = st, t ′ = s + t2 .

Irreducible invariant algebraic curves of the system are:

G (s, t) = s, G (s, t) = t2 + 2s, G (s, t) = s2 + ct2 + 2cs



The third algebraic curve s2 + ct2 + 2cs = 0 depends on a
transcendental parameter c . It can be parametrized by

Q(x) =

(
− 2c

1 + cx2
,− 2cx

1 + cx2

)
.

Running Step 5 in RATSOLVE, the differential equation defining
the reparametrization is T ′ = 1. Hence T (x) = x . So the rational
solution in this case is

s(x) = − 2c

1 + cx2
, t(x) = − 2cx

1 + cx2
.

Since G (s, t) contains a transcendental constant, the above
solution is a rational general solution of the associated system.
Therefore, the rational general solution of F (x , y , y ′) = 0 is

y =
1

2
x2 +

1

c
x +

1

2c2
+

3

2c
,

which, after a change of parameter, can be written as

y =
1

2
(x2 + 2cx + c2 + 3c).



Recently we have been able to derive an algorithm for deciding the
existence of a strong rational general solution, i.e. a general
solution in K (c , x) (also rational in the constant c):
the curve

C = {(a1, a2) ∈ A2(K (x)) | F (x , a1, a2) = 0 }

must have genus 0.

If F = 0 has a strong rational general solution, then it has an
associated Riccati equation

ω′ = a0(x) + a1(x)ω + a2(x)ω2 .

Existence of rational general solution can be decided.

So we have a full decision algorithm for finding rational general
solutions of strongly parametrizable AODEs.
Almost all first-order AODEs in the collection of Kamke are in this
class. These cover 64 percent of all the first-order ODEs in Kamke.



Example 1.537 in Kamke: Consider the differential equation

F (x , y , y ′) = x3y ′3 − 3x2yy ′2 + (x6 + 3xy2)y ′ − y3 − 2x5y

= (xy ′ − y)3 + x6y ′ − 2x5y = 0 .

The associated curve defined by F (x , y , z) = 0 can be
parametrized by

P(t) =

(
− t3x5 − t2x6 + (t − x)3

t3x5
,−2t3x5 − 2t2x6 + (t − x)3

t3x6

)
.

Therefore, the associated differential (Riccati) equation with
respect to P is

ω′ =
1

x2
ω(2ω − x) .

This Riccati equation has the rational general solution

ω(x) =
x

1 + cx2
.

Hence, the original AODE F (x , y , y ′) = 0 has the rational general
solution

y(x) = cx(x + c2) .



Classification of AODEs / differential orbits

I consider a group of transformations leaving the associated
system of an AODE invariant; orbits w.r.t. such a
transformation group contain AODEs of equal complexity in
terms of determining rational solutions

I we have studied affine and birational transformations

I it turns out that being autonomous is not an intrinsic property
of an AODE; certain classes contain both autonomous and
non-autonomous AODEs



Extension to non-rational solutions
(G.Grasegger, PhD Thesis)

(a) y8y ′ − y5 − y ′ = 0:

parametrization: (1t ,
t3

1−t8 ),

radical solution: y(x) = −
(

2(x + c)−
√
−1 + 4(x + c)2

)−1/4
(b) 4y7 − 4y5 − y3 − 2y ′ − 8y2y ′ + 8y4y ′ + 8yy ′2 = 0: (genus 1)

parametrization:
(
1
t ,

−4+4t2+t4

t(4t2−4t4−t6−
√
t12+8t10+16t8−16t4)

)
radical solution: y(x) = −

√
1+c+x√

1+(c+x)2

(c) y3 + y2 + y ′2 = 0:
parametrization: (−1− t2, t(−1− t2)),

trigonometric solution: y(x) = −1− tan
(
x+c
2

)2
(d) y2 + y ′2 + 2yy ′ + y = 0:

parametrization:
(
− 1

(1+t)2
,− t

(1+t)2

)
exponential solution: y(x) = −e−x(−1 + ex/2)2
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I Y. Huang, L.X.C. Ngô, F. Winkler, Rational general solutions
of trivariate rational differential systems, Mathematics in
Computer Science, 6/4, 361–374, 2012.
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Conclusion

I we can decide whether an AODE has a strong general rational
solution,
and if it has, we can determine such a general rational solution

I we have a generalization of the solution method for rational
solutions to other types of solutions; but not yet a decision
procedure

I currently we are extending the method to algebraic partial
differential equations

I we have ideas for finding ALL rational solutions of an AODE



Thank you for your attention!


