
Introduction to Unification Theory
Higher-Order Unification

Temur Kutsia

RISC, Johannes Kepler University Linz
kutsia@risc.jku.at

Overview

Introduction

Preliminaries

Higher-Order Unification Procedure

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.
▸ Can be solved, e.g., with the identity function or with the

constant function a.
▸ Higher-order equations.
▸ Solving method: Higher-order unification.

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.
▸ Can be solved, e.g., with the identity function or with the

constant function a.
▸ Higher-order equations.
▸ Solving method: Higher-order unification.

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.

▸ Can be solved, e.g., with the identity function or with the
constant function a.

▸ Higher-order equations.
▸ Solving method: Higher-order unification.

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.
▸ Can be solved, e.g., with the identity function or with the

constant function a.

▸ Higher-order equations.
▸ Solving method: Higher-order unification.

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.
▸ Can be solved, e.g., with the identity function or with the

constant function a.
▸ Higher-order equations.

▸ Solving method: Higher-order unification.

Introduction

▸ In first order unification, we were not allowed to replace a
variable with a function.

▸ However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

▸ F: Higher-order variable, appears at functional position.
▸ Can be solved, e.g., with the identity function or with the

constant function a.
▸ Higher-order equations.
▸ Solving method: Higher-order unification.

Introduction

▸ Higher-order unification is fundamental in automating
higher-order reasoning.

▸ Used in logical frameworks, logic programming, program
synthesis, program transformation, type inferencing,
computational linguistics, etc.

▸ Much more complicated than first-order unification
(undecidable, of type zero, nonterminating, . . .).

▸ In this lecture: Introduction to higher-order unification.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Simply Typed λ-Calculus

▸ Simply type λ-calculus is our term language.
▸ In this section: Definitions and elementary properties.

▸ Types
▸ Terms
▸ Substitutions
▸ Reduction
▸ Unification

Types

Types
Consider a finite set whose elements are called atomic types
(or base types). Then:

▸ Atomic types are types,
▸ If T and U are types than T → U is a type.

The expression T1 → T2 → ⋯→ Tn → U is a notation for the type
T1 → (T2 → ⋯→ (Tn → U) . . .).

Types

Order of a Type

▸ o(T) = 1 if T is atomic.
▸ o(T → U) = max{1 + o(T),o(U)}.

Example
Let T1,T2,T3 be atomic types, then

▸ o(T1 → T2 → T3) = 2.
▸ o((T1 → T2)→ T3) = 3.

Terms

Assumptions:
▸ Consider finite set of constants.
▸ To each constant a type is assigned.
▸ For each atomic type there is at least one constant.
▸ For each type there is an infinite set of variables.
▸ Two different types have disjoint sets of variables.

λ-Terms
▸ Constants are terms.
▸ Variables are terms.
▸ If t and s are terms then (t s) is a term.
▸ If x is a variable and t is a term then λx. t is a term.

The expression (t s1 . . . sn) is a notation for the term
(. . . (t s1) . . . sn)

Terms

▸ λx. t is a function where λx is the λ-abstraction and t is the
body. Intuitively, it is a function x↦ t.

▸ In λx. t, λx is a binder for x in t. Occurrences of x in t are
bound.

▸ (t s) is an application where function t is applied to the
argument s.

Terms

Type of a Term
A term t is said to have the type T if either

▸ t is a constant of type T,
▸ t is a variable of type T,
▸ t = (r s), r has type U → T and s has type U for some U,
▸ t = λx. s, the variable x has type U, the term s has type V

and T = U → V.

▸ A term t is said to be well-typed if there exists a type T
such that t has type T.

▸ In this case T is unique and it is called the type of t.
▸ We consider only well-typed terms.

Order

Order of a Symbol, Language

▸ The order of a function symbol or a variable is the order of
its type.

▸ A language of order n is one which allows function symbols
of order at most n + 1 and variables of order at most n.

Formalization of the conventions:
▸ First order term denotes an individual.
▸ Second order term denotes a function on individuals.
▸ etc.

Free Variables

▸ vars(t): The set of variables occurring in the term t.
▸ An occurrence of a variable in a term is free if it is not

bound.
▸ The set of variables that occur freely in t, denoted fvars(t):

▸ fvars(c) = ∅, where c is a constant.
▸ fvars(x) = {x}.
▸ fvars((s r)) = fvars(s) ∪ fvars(r).
▸ fvars(λx. s) = fvars(s) ∖ {x}.

▸ Closed term: A term without free variables.

Free Variables

Example

▸ fvars(λx. x) = ∅.
(Closed term)

▸ fvars(λx. y) = {y}.
▸ fvars(((λx. x) x)) = {x}.

(x has a bound occurrence as well)

Substitution

▸ We reuse the definition of substitution as finite mapping
from the previous lectures, but in addition require that it
preserves types.

▸ Hence, if x↦ t is a binding of a substitution, x and t have
the same type.

▸ The definitions of composition, more general substitution,
etc. will also be reused.

Replacement in a Term

Replacement in a Term
Let σ = {x1 ↦ t1, . . . , xn ↦ tn} be a substitution and t be a term,
then the term t⟨σ⟩ is defined as follows:

▸ c⟨σ⟩ = c.
▸ xi⟨σ⟩ = ti.
▸ x⟨σ⟩ = x, if x ∉ {x1, . . . , xn}.
▸ (s r)⟨σ⟩ = (s⟨σ⟩ r⟨σ⟩).
▸ (λx. s)⟨σ⟩ = (λx. s⟨σ⟩).

Example

▸ (λx. x)⟨{x↦ y}⟩ = λx. y.
▸ (λy. x)⟨{x↦ y}⟩ = λy. y (variable capture).

α-Equivalence

α-Equivalence

▸ c ≡α c.
▸ x ≡α x.
▸ (t s) ≡α (t′ s′) if t ≡α t′ and s ≡α s′.
▸ λx. t ≡α λy. s if t⟨{x↦ z}⟩ ≡α s⟨{y↦ z}⟩ for some variable z

different from x and y and occurring neither in t nor in s.

Example

▸ λx. x ≡α λy. y.

▸ α-equivalence is an equivalence relation.
▸ Application and abstraction are compatible with
α-equivalence.

Substitution in a Term

Substitution in a Term
Let σ = {x1 ↦ t1, . . . , xn ↦ tn} be a substitution and t be a term,
then the term tσ is defined as follows:

▸ cσ = c.
▸ xiσ = ti.
▸ xσ = x, if x ∉ {x1, . . . , xn}.
▸ (s r)σ = (sσ rσ).
▸ (λx. s)σ = (λy. s{x↦ y}σ), where y is a fresh variable of the

same type as x.

Since the choice of fresh variable is arbitrary, the substitution
operation is defined on α-equivalence classes.

Substitution in a Term

Example

▸ (λx. x){x↦ y} = λz. z.
▸ (λy. x){x↦ y} = λz. y (no variable capture).
▸ (xλx. (x y)){x↦ λz.z} = (λz.z λu. (u y)).

Reduction

▸ Intuition: Function evaluation.
▸ For instance, evaluating function f ∶ x↦ x + 1 at 2:

f (2) = 2 + 1.
▸ As λ-terms: ((λx. x + 1) 2) ⊳ x + 1{x↦ 2} = 2 + 1.

(β-reduction)

Reduction

Formally:

βη-Reduction

▸ β-reduction: ((λx.s) t) ⊳ s{x↦ t}.
▸ η-reduction: (λx.(t x)) ⊳ t, if x ∉ fvars(t).

Propagates into contexts:
▸ If s ⊳ s′ then (s t) ⊳ (s′ t).
▸ If t ⊳ t′ then (s t) ⊳ (s t′).
▸ If t ⊳ t′ then λx. t ⊳ λx. t′.

Reduction

⊳∗ - reflexive-transitive closure of ⊳.
Facts:

▸ βη-Reduction preserves types.
▸ If s ⊳∗ t then sσ ⊳∗ tσ.
▸ Each term has a unique βη-normal form modulo
α-equivalence.

Reduction

Example

λx.(f ((λy.(y x))λz.z)) ⊳β λx.(f ((λz.z) x))
⊳β λx.(f x)
⊳η f

Long Normal Form

Long Normal Form
Assume

▸ t = λx1. . . . λxm. (r s1 . . . sk) is in the βη-normal form,
▸ T1 → ⋯→ Tn → U is a type of t,
▸ U is atomic and n ≥ m.

Then the long normal form of t is the term

t′ = λx1. . . . λxm.λxm+1. . . . λxn.(r s′1 . . . s
′
k x′m+1 . . . x′n)

where
▸ s′i is the long normal form of si.
▸ x′i is the long normal form of xi.

The long normal form of any term is that of its normal form.
Since t is in the normal form, r (called the head of t) is either a
constant or a variable.

Long Normal Form

Long Normal Form
Assume

▸ t = λx1. . . . λxm. (r s1 . . . sk) is in the βη-normal form,
▸ T1 → ⋯→ Tn → U is a type of t,
▸ U is atomic and n ≥ m.

Then the long normal form of t is the term

t′ = λx1. . . . λxm.λxm+1. . . . λxn.(r s′1 . . . s
′
k x′m+1 . . . x′n)

where
▸ s′i is the long normal form of si.
▸ x′i is the long normal form of xi.

The long normal form of any term is that of its normal form.

Since t is in the normal form, r (called the head of t) is either a
constant or a variable.

Long Normal Form

Long Normal Form
Assume

▸ t = λx1. . . . λxm. (r s1 . . . sk) is in the βη-normal form,
▸ T1 → ⋯→ Tn → U is a type of t,
▸ U is atomic and n ≥ m.

Then the long normal form of t is the term

t′ = λx1. . . . λxm.λxm+1. . . . λxn.(r s′1 . . . s
′
k x′m+1 . . . x′n)

where
▸ s′i is the long normal form of si.
▸ x′i is the long normal form of xi.

The long normal form of any term is that of its normal form.
Since t is in the normal form, r (called the head of t) is either a
constant or a variable.

Long Normal Form

Example
Let the type of f be T1 → T2 → U, with U atomic.
Let t be λx.(f ((λy.(y x))λz.z)).

▸ The long normal form of t is λx.λy.(f x y).
▸ λx.λy.(f x y) is a long normal form of λx.(f x) as well, which

is a β-normal form of t.
▸ In general, to compute long normal form, it is not

necessary to perform η-reductions.

Long Normal Form

Example
Let the type of f be T1 → T2 → U, with U atomic.
Let t be λx.(f ((λy.(y x))λz.z)).

▸ The long normal form of t is λx.λy.(f x y).

▸ λx.λy.(f x y) is a long normal form of λx.(f x) as well, which
is a β-normal form of t.

▸ In general, to compute long normal form, it is not
necessary to perform η-reductions.

Long Normal Form

Example
Let the type of f be T1 → T2 → U, with U atomic.
Let t be λx.(f ((λy.(y x))λz.z)).

▸ The long normal form of t is λx.λy.(f x y).
▸ λx.λy.(f x y) is a long normal form of λx.(f x) as well, which

is a β-normal form of t.

▸ In general, to compute long normal form, it is not
necessary to perform η-reductions.

Long Normal Form

Example
Let the type of f be T1 → T2 → U, with U atomic.
Let t be λx.(f ((λy.(y x))λz.z)).

▸ The long normal form of t is λx.λy.(f x y).
▸ λx.λy.(f x y) is a long normal form of λx.(f x) as well, which

is a β-normal form of t.
▸ In general, to compute long normal form, it is not

necessary to perform η-reductions.

Long Normal Form

▸ In the rest, “normal form” stands for “long normal form”.
▸ Notation: We write

λx1. . . . λxn. r(t1, . . . , tm)

for
λx1. . . . λxn. (r t1 . . . tm)

in normal form. r is either a constant or a variable.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Higher Order Unification

Higher-Order Unification Problem, Unifier

▸ Higher-Order Unification problem: a finite set of equations

P = {s1 ≐? t1, . . . , sn ≐? tn},

where si, ti are λ-terms.
▸ Unifier of P: a substitution σ such that siσ and tiσ have the

same normal form for each 1 ≤ i ≤ n.

We will use capital letters to denote free variables in unification
problems.

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.

▸ Unifier: σ1 = {F ↦ λx.f (x,b)}.
▸ Justification:

F(f (a,b))σ1 = ((λx.f (x,b)) f (a,b)) ⊳β f (f (a,b),b).
f (F(a),b)σ1 = f (((λx.f (x,b))a),b) ⊳β f (f (a,b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Unifier: σ1 = {F ↦ λx.f (x,b)}.

▸ Justification:

F(f (a,b))σ1 = ((λx.f (x,b)) f (a,b)) ⊳β f (f (a,b),b).
f (F(a),b)σ1 = f (((λx.f (x,b))a),b) ⊳β f (f (a,b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Unifier: σ1 = {F ↦ λx.f (x,b)}.
▸ Justification:

F(f (a,b))σ1 = ((λx.f (x,b)) f (a,b)) ⊳β f (f (a,b),b).

f (F(a),b)σ1 = f (((λx.f (x,b))a),b) ⊳β f (f (a,b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Unifier: σ1 = {F ↦ λx.f (x,b)}.
▸ Justification:

F(f (a,b))σ1 = ((λx.f (x,b)) f (a,b)) ⊳β f (f (a,b),b).
f (F(a),b)σ1 = f (((λx.f (x,b))a),b) ⊳β f (f (a,b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.

▸ Another unifier: σ2 = {F ↦ λx.f (f (x,b),b)}.
▸ Justification:

F(f (a,b))σ2 = ((λx.f (f (x,b),b)) f (a,b)) ⊳β f (f (f (a,b),b),b).
f (F(a),b)σ2 = f (((λx.f (f (x,b),b))a),b) ⊳β f (f (f (a,b),b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Another unifier: σ2 = {F ↦ λx.f (f (x,b),b)}.

▸ Justification:

F(f (a,b))σ2 = ((λx.f (f (x,b),b)) f (a,b)) ⊳β f (f (f (a,b),b),b).
f (F(a),b)σ2 = f (((λx.f (f (x,b),b))a),b) ⊳β f (f (f (a,b),b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Another unifier: σ2 = {F ↦ λx.f (f (x,b),b)}.
▸ Justification:

F(f (a,b))σ2 = ((λx.f (f (x,b),b)) f (a,b)) ⊳β f (f (f (a,b),b),b).

f (F(a),b)σ2 = f (((λx.f (f (x,b),b))a),b) ⊳β f (f (f (a,b),b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Another unifier: σ2 = {F ↦ λx.f (f (x,b),b)}.
▸ Justification:

F(f (a,b))σ2 = ((λx.f (f (x,b),b)) f (a,b)) ⊳β f (f (f (a,b),b),b).
f (F(a),b)σ2 = f (((λx.f (f (x,b),b))a),b) ⊳β f (f (f (a,b),b),b).

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.

▸ Infinitely many unifiers, of the shape

{F ↦ λx. f (. . . f (x,b), . . .b)}.

▸ Incomparable wrt instantiation quasi-ordering.
▸ Minimal complete set of unifiers.
▸ There are problems for which this set does not exist!

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Infinitely many unifiers, of the shape

{F ↦ λx. f (. . . f (x,b), . . .b)}.

▸ Incomparable wrt instantiation quasi-ordering.
▸ Minimal complete set of unifiers.
▸ There are problems for which this set does not exist!

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Infinitely many unifiers, of the shape

{F ↦ λx. f (. . . f (x,b), . . .b)}.

▸ Incomparable wrt instantiation quasi-ordering.

▸ Minimal complete set of unifiers.
▸ There are problems for which this set does not exist!

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Infinitely many unifiers, of the shape

{F ↦ λx. f (. . . f (x,b), . . .b)}.

▸ Incomparable wrt instantiation quasi-ordering.
▸ Minimal complete set of unifiers.

▸ There are problems for which this set does not exist!

Higher Order Unification

Example

▸ P = {F(f (a,b)) ≐? f (F(a),b)}.
▸ Infinitely many unifiers, of the shape

{F ↦ λx. f (. . . f (x,b), . . .b)}.

▸ Incomparable wrt instantiation quasi-ordering.
▸ Minimal complete set of unifiers.
▸ There are problems for which this set does not exist!

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.

▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))

σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions (together with the instance terms):

σ = {F ↦ λx.λy. H(x)} H(λx.G(x))
σ0 = {F ↦ λx.λy. x, G↦ λx.Y} λx.Y

σ1 = {F ↦ λx.λy. G1(x, x(H1
1(x, y))), G↦ λx. Y} G1(λx.Y, Y)

σ2 = {F ↦ λx.λy.G2(x, x(H2
1(x, y)), x(H2

2(x, y))), G↦ λx.Y}
G2(λx.Y, Y, Y)

. . .

σn = {F ↦ λx.λy.Gn(x, x(Hn
1(x, y)), . . . , x(H

n
n(x, y))), G↦ λx.Y}

Gn(λx.Y, Y, . . . ,Y) (There are n Y ’s here.)

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions:

σ = {F ↦ λx.λy.H(x)}
σ0 = {F ↦ λx. x, G↦ λx.Y}
σn = {F ↦ λx.λy.Gn(x, x(Hn

1(x, y)), . . . , x(H
n
n(x, y))), G↦ λx.Y}

▸ No mcsu. For all i, j > i: σi /⩿{F,G} σj, σ /⩿{F,G} σi, σi /⩿{F,G} σ, and
σi ≖{F,G} σi+1ϑi where

ϑi = {Gi+1 ↦ λx.λy1. . . . λyi+1.Gi(x, y1, . . . , yi),
Hi+1

1 ↦ Hi
1, . . . ,H

i+1
i ↦ Hi

i}

▸ Infinite descending chain: σ1 ⪀{F,G} σ2 ⪀{F,G} ⋯

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions:

σ = {F ↦ λx.λy.H(x)}
σ0 = {F ↦ λx. x, G↦ λx.Y}
σn = {F ↦ λx.λy.Gn(x, x(Hn

1(x, y)), . . . , x(H
n
n(x, y))), G↦ λx.Y}

▸ No mcsu. For all i, j > i: σi /⩿{F,G} σj, σ /⩿{F,G} σi, σi /⩿{F,G} σ, and
σi ≖{F,G} σi+1ϑi where

ϑi = {Gi+1 ↦ λx.λy1. . . . λyi+1.Gi(x, y1, . . . , yi),
Hi+1

1 ↦ Hi
1, . . . ,H

i+1
i ↦ Hi

i}

▸ Infinite descending chain: σ1 ⪀{F,G} σ2 ⪀{F,G} ⋯

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ Complete set of solutions:

σ = {F ↦ λx.λy.H(x)}
σ0 = {F ↦ λx. x, G↦ λx.Y}
σn = {F ↦ λx.λy.Gn(x, x(Hn

1(x, y)), . . . , x(H
n
n(x, y))), G↦ λx.Y}

▸ No mcsu. For all i, j > i: σi /⩿{F,G} σj, σ /⩿{F,G} σi, σi /⩿{F,G} σ, and
σi ≖{F,G} σi+1ϑi where

ϑi = {Gi+1 ↦ λx.λy1. . . . λyi+1.Gi(x, y1, . . . , yi),
Hi+1

1 ↦ Hi
1, . . . ,H

i+1
i ↦ Hi

i}

▸ Infinite descending chain: σ1 ⪀{F,G} σ2 ⪀{F,G} ⋯

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.

▸ The problem is of third order.
▸ Higher-order unification of the order 3 and above is of type 0.
▸ Second order unification is infinitary.

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ The problem is of third order.

▸ Higher-order unification of the order 3 and above is of type 0.
▸ Second order unification is infinitary.

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ The problem is of third order.
▸ Higher-order unification of the order 3 and above is of type 0.

▸ Second order unification is infinitary.

Higher Order Unification Is of Type 0

▸ Unification problem: P = {F(λx.G(x),a) ≐? F(λx.G(x),b)}.
▸ The problem is of third order.
▸ Higher-order unification of the order 3 and above is of type 0.
▸ Second order unification is infinitary.

Higher Order Unification Is Undecidable

▸ Idea: Reduce Hilbert’s 10th problem to a higher-order
unification problem.

▸ Hilbert’s 10th problem is undecidable: There is no
algorithm that takes as input two polynomials P(X1, . . . ,Xn)
and Q(X1, . . . ,Xn) with natural coefficients and answers if
there exist natural numbers m1, . . . ,mn such that

P(m1, . . . ,mn) = Q(m1, . . . ,mn).

▸ Reduction requires to represent
▸ natural numbers,
▸ addition,
▸ multiplication

in terms of higher-order unification.

Higher Order Unification Is Undecidable

Representation (Goldfarb 1981):
▸ Natural number n represented as a λ-term denoted by n:

λx.g(a,g(a, . . .g(a, x) . . .))

with n occurrences of g and a. The type of g is i→ i→ i and
the type of a is i. Such terms are called Goldfarb numbers.

▸ Goldfarb numbers are exactly those that solve the
unification problem

{g(a,X(a)) ≐? X(g(a,a))}

and have the type i→ i.

Higher Order Unification Is Undecidable

Representation:
▸ Addition is represented by the λ-term add:

λn.λm.λx. n(m(x)).

▸ Multiplication is represented by the higher-order unification
problem

{Y(a,b,g(g(X3(a),X2(b)),a)) ≐? g(g(a,b),Y(X1(a),g(a,b),a))
Y(b,a,g(g(X3(b),X2(a)),a)) ≐? g(g(b,a),Y(X1(b),g(a,a),a))}

that has a solution {X1 ↦ m1,X2 ↦ m2,X3 ↦ m3,Y ↦ t} for
some t iff m1 ×m2 = m3.

Higher Order Unification Is Undecidable

Reduction from Hilbert’s 10th problem:
▸ Every equation P(X1, . . . ,Xn) = Q(X1, . . . ,Xn) can be

decomposed into a system of equations of the form:
Xi + Xj = Xk, Xi × Xj = Xk, Xi = m.

▸ With each such system associate a unification problem
containing

▸ for each Xi an equation g(a,Xi(a)) ≐? Xi(g(a,a)),
▸ for each Xi + Xj = Xk the equation add(Xi,Xj) ≐? Xk,
▸ for each Xi × Xj = Xk the two equations used to define

multiplication,
▸ for each Xi = m the equation Xi ≐? m.

Second Order Unification Is Undecidable

▸ The reduction implies undecidability of higher-order
unification.

▸ Since the reduction is actually to second-order unification,
the result is sharper:

Theorem
Second-order unification is undecidable.

For the details of undecidability of second-order unification, see

W. D. Goldfarb
The undecidability of the second-order unification problem.
Theoretical Computer Science 13, 225–230.

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:

1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).

2. For a given unification problem, take the first untried
substitution and check whether it is a solution.

3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

▸ Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

▸ If the problem is solvable, the procedure will detect it after
finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).

2. For a given unification problem, take the first untried
substitution and check whether it is a solution.

3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

▸ Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

▸ If the problem is solvable, the procedure will detect it after
finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).
2. For a given unification problem, take the first untried

substitution and check whether it is a solution.

3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

▸ Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

▸ If the problem is solvable, the procedure will detect it after
finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).
2. For a given unification problem, take the first untried

substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as

tried and iterate.

▸ Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

▸ If the problem is solvable, the procedure will detect it after
finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).
2. For a given unification problem, take the first untried

substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as

tried and iterate.
▸ Checking is not hard: Apply the substitution to both sides of

each equation, normalize, and compare the normal forms.

▸ If the problem is solvable, the procedure will detect it after
finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).
2. For a given unification problem, take the first untried

substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as

tried and iterate.
▸ Checking is not hard: Apply the substitution to both sides of

each equation, normalize, and compare the normal forms.
▸ If the problem is solvable, the procedure will detect it after

finite steps.

▸ Then... why to bother with looking for another unification
procedure?

Higher-Order Unification Procedure

▸ Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to

enumerate all closed substitutions).
2. For a given unification problem, take the first untried

substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as

tried and iterate.
▸ Checking is not hard: Apply the substitution to both sides of

each equation, normalize, and compare the normal forms.
▸ If the problem is solvable, the procedure will detect it after

finite steps.
▸ Then... why to bother with looking for another unification

procedure?

Higher-Order Unification Procedure

Why to look for a “better” procedure?

▸ To find solutions faster.
▸ To report failure for many unsolvable cases.
▸ To reduce redundancy.
▸ etc.

Higher-Order Unification Procedure

Why to look for a “better” procedure?
▸ To find solutions faster.

▸ To report failure for many unsolvable cases.
▸ To reduce redundancy.
▸ etc.

Higher-Order Unification Procedure

Why to look for a “better” procedure?
▸ To find solutions faster.
▸ To report failure for many unsolvable cases.

▸ To reduce redundancy.
▸ etc.

Higher-Order Unification Procedure

Why to look for a “better” procedure?
▸ To find solutions faster.
▸ To report failure for many unsolvable cases.
▸ To reduce redundancy.
▸ etc.

Higher-Order Unification Procedure

▸ System: a pair P;σ, where P is a higher-order unification
problem and σ is a substitution.

▸ Procedure is given by transformation rules on systems.
▸ The description essentially follows the paper

W. Snyder and J. Gallier.
Higher-Order Unification Revisited: Complete Sets of
Transformations.
J. Symbolic Computation, 8(1–2), 101–140, 1989.

Important Observation

▸ Flex-flex equation has a form

λx1. . . . λxk. F(s1, . . . , sn) ≐? λx1. . . . λxk. G(t1, . . . , tm).

The head of both sides are free variables.

▸ Any flex-flex equation is solvable. Just take

{F ↦ λy1. . . . λyn. c, G↦ λy1. . . . λym. c}.

▸ The appropriate c always exists because for each type we
have at least one constant of that type.

▸ Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

▸ Idea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Important Observation

▸ Flex-flex equation has a form

λx1. . . . λxk. F(s1, . . . , sn) ≐? λx1. . . . λxk. G(t1, . . . , tm).

The head of both sides are free variables.
▸ Any flex-flex equation is solvable. Just take

{F ↦ λy1. . . . λyn. c, G↦ λy1. . . . λym. c}.

▸ The appropriate c always exists because for each type we
have at least one constant of that type.

▸ Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

▸ Idea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Important Observation

▸ Flex-flex equation has a form

λx1. . . . λxk. F(s1, . . . , sn) ≐? λx1. . . . λxk. G(t1, . . . , tm).

The head of both sides are free variables.
▸ Any flex-flex equation is solvable. Just take

{F ↦ λy1. . . . λyn. c, G↦ λy1. . . . λym. c}.

▸ The appropriate c always exists because for each type we
have at least one constant of that type.

▸ Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

▸ Idea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Important Observation

▸ Flex-flex equation has a form

λx1. . . . λxk. F(s1, . . . , sn) ≐? λx1. . . . λxk. G(t1, . . . , tm).

The head of both sides are free variables.
▸ Any flex-flex equation is solvable. Just take

{F ↦ λy1. . . . λyn. c, G↦ λy1. . . . λym. c}.

▸ The appropriate c always exists because for each type we
have at least one constant of that type.

▸ Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

▸ Idea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Important Observation

▸ Flex-flex equation has a form

λx1. . . . λxk. F(s1, . . . , sn) ≐? λx1. . . . λxk. G(t1, . . . , tm).

The head of both sides are free variables.
▸ Any flex-flex equation is solvable. Just take

{F ↦ λy1. . . . λyn. c, G↦ λy1. . . . λym. c}.

▸ The appropriate c always exists because for each type we
have at least one constant of that type.

▸ Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

▸ Idea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Preunification

Preunifier
▸ Let ≅ be the least congruence relation on the set of
λ-terms that contains the set of flex-flex pairs.

▸ A substitution σ is a preunifier for a unification problem
{s1 ≐? t1, . . . , sn ≐? tn} iff

normal-form(siσ) ≅ normal-form(tiσ)

for each 1 ≤ i ≤ n.

Convention
▸ xn abbreviates x1, . . . , xn.
▸ λxn abbreviates λx1.λxn.

One Technical Notion

Partial Binding
A partial binding of type T1 → ⋯→ Tn → U (U atomic) is a term
of the form

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

where l is a constant or a variable, and

▸ the type of xi is Ti for 1 ≤ i ≤ n,
▸ the type of l is S1 → ⋯→ Sk → U, where Si is

Ri
1 → ⋯→ Ri

mi
→ S′i (S′i atomic) for 1 ≤ i ≤ k,

▸ the type of yi
j is Ri

j for 1 ≤ i ≤ k and 1 ≤ j ≤ mi.
▸ the type of Hi is T1 → ⋯→ Tn → Ri

1 → ⋯→ Ri
mi
→ S′i for

1 ≤ i ≤ k.

One Technical Notion

Partial Binding
A partial binding of type T1 → ⋯→ Tn → U (U atomic) is a term
of the form

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

where l is a constant or a variable, and
▸ the type of xi is Ti for 1 ≤ i ≤ n,

▸ the type of l is S1 → ⋯→ Sk → U, where Si is
Ri

1 → ⋯→ Ri
mi
→ S′i (S′i atomic) for 1 ≤ i ≤ k,

▸ the type of yi
j is Ri

j for 1 ≤ i ≤ k and 1 ≤ j ≤ mi.
▸ the type of Hi is T1 → ⋯→ Tn → Ri

1 → ⋯→ Ri
mi
→ S′i for

1 ≤ i ≤ k.

One Technical Notion

Partial Binding
A partial binding of type T1 → ⋯→ Tn → U (U atomic) is a term
of the form

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

where l is a constant or a variable, and
▸ the type of xi is Ti for 1 ≤ i ≤ n,
▸ the type of l is S1 → ⋯→ Sk → U, where Si is

Ri
1 → ⋯→ Ri

mi
→ S′i (S′i atomic) for 1 ≤ i ≤ k,

▸ the type of yi
j is Ri

j for 1 ≤ i ≤ k and 1 ≤ j ≤ mi.
▸ the type of Hi is T1 → ⋯→ Tn → Ri

1 → ⋯→ Ri
mi
→ S′i for

1 ≤ i ≤ k.

One Technical Notion

Partial Binding
A partial binding of type T1 → ⋯→ Tn → U (U atomic) is a term
of the form

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

where l is a constant or a variable, and
▸ the type of xi is Ti for 1 ≤ i ≤ n,
▸ the type of l is S1 → ⋯→ Sk → U, where Si is

Ri
1 → ⋯→ Ri

mi
→ S′i (S′i atomic) for 1 ≤ i ≤ k,

▸ the type of yi
j is Ri

j for 1 ≤ i ≤ k and 1 ≤ j ≤ mi.

▸ the type of Hi is T1 → ⋯→ Tn → Ri
1 → ⋯→ Ri

mi
→ S′i for

1 ≤ i ≤ k.

One Technical Notion

Partial Binding
A partial binding of type T1 → ⋯→ Tn → U (U atomic) is a term
of the form

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

where l is a constant or a variable, and
▸ the type of xi is Ti for 1 ≤ i ≤ n,
▸ the type of l is S1 → ⋯→ Sk → U, where Si is

Ri
1 → ⋯→ Ri

mi
→ S′i (S′i atomic) for 1 ≤ i ≤ k,

▸ the type of yi
j is Ri

j for 1 ≤ i ≤ k and 1 ≤ j ≤ mi.
▸ the type of Hi is T1 → ⋯→ Tn → Ri

1 → ⋯→ Ri
mi
→ S′i for

1 ≤ i ≤ k.

Partial Binding

λxn. l(λy1
m1
.H1(xn, y1

m1
), . . . , λyk

mk
.Hk(xn, yk

mk
))

▸ Imitation binding: l is a constant or a free variable.
▸ (ith) Projection binding: l is xi.
▸ A partial binding t is appropriate to F if t and F have the

same types.
▸ F ↦ t: Appropriate partial (imitation, projection) binding if t

is partial (imitation, projection) binding appropriate to F.

Higher-Order Preunification Procedure

▸ The inference system UHOP consists of the rules:
▸ Trivial
▸ Decomposition
▸ Variable Elimination
▸ Orient
▸ Imitation
▸ Projection

▸ The rules transform systems: pairs P;σ, where P is a
higher-order unification problem and σ is a substitution.

▸ A system P;σ is in presolved form if P is either empty or
consists of flex-flex equations only.

Higher-Order Preunification Procedure. Rules

Trivial: {t ≐? t} ∪ P′;ϑÔ⇒ P′;ϑ

Decomposition:

{λxk. l(s1, . . . , sn) ≐? λxk. l(t1, . . . , tn)} ∪ P′;ϑÔ⇒
{λxk. s1 ≐? λxk. t1, . . . , λxk. sn ≐? λxk. tn,} ∪ P′;ϑ.

where l is either a constant or one of the bound variables x1, . . . , xk.

Variable Elimination:

{λx1. . . . λxk. F(x1, . . . , xk) ≐? t} ∪ P′;ϑÔ⇒ P′{F ↦ t};ϑ{F ↦ t}.

If F ∉ fvars(t)

Higher-Order Preunification Procedure. Rules

Trivial: {t ≐? t} ∪ P′;ϑÔ⇒ P′;ϑ

Decomposition:

{λxk. l(s1, . . . , sn) ≐? λxk. l(t1, . . . , tn)} ∪ P′;ϑÔ⇒
{λxk. s1 ≐? λxk. t1, . . . , λxk. sn ≐? λxk. tn,} ∪ P′;ϑ.

where l is either a constant or one of the bound variables x1, . . . , xk.

Variable Elimination:

{λx1. . . . λxk. F(x1, . . . , xk) ≐? t} ∪ P′;ϑÔ⇒ P′{F ↦ t};ϑ{F ↦ t}.

If F ∉ fvars(t)

Higher-Order Preunification Procedure. Rules

Trivial: {t ≐? t} ∪ P′;ϑÔ⇒ P′;ϑ

Decomposition:

{λxk. l(s1, . . . , sn) ≐? λxk. l(t1, . . . , tn)} ∪ P′;ϑÔ⇒
{λxk. s1 ≐? λxk. t1, . . . , λxk. sn ≐? λxk. tn,} ∪ P′;ϑ.

where l is either a constant or one of the bound variables x1, . . . , xk.

Variable Elimination:

{λx1. . . . λxk. F(x1, . . . , xk) ≐? t} ∪ P′;ϑÔ⇒ P′{F ↦ t};ϑ{F ↦ t}.

If F ∉ fvars(t)

Higher-Order Preunification Procedure. Rules
Orient:

{λxk. l(t1, . . . , tm) ≐? λxk. F(s1, . . . , sn)} ∪ P′;ϑÔ⇒
{λxk. F(s1, . . . , sn) ≐? λxk. l(t1, . . . , tm)} ∪ P′;ϑ

where l is not a free variable.

Imitation:

{λxk. F(s1, . . . , sn) ≐? λxk. f (t1, . . . , tm)} ∪ P′;ϑÔ⇒

{λxk. f (λz1
r1
. H1(s1, . . . , sn, z1

r1
), . . . , λzm

rm
. Hm(s1, . . . , sn, zm

rm
))σ

≐? λxk. f (t1, . . . , tm)σ} ∪ P′σ;ϑσ

where

▸ σ = {F ↦ λyn. f (λz1
r1
. H1(yn, z1

r1
), . . . , λzm

rm
. Hm(yn, zm

rm
))},

appropriate imitation binding.

▸ H1, . . . ,Hm are fresh variables.

Higher-Order Preunification Procedure. Rules
Orient:

{λxk. l(t1, . . . , tm) ≐? λxk. F(s1, . . . , sn)} ∪ P′;ϑÔ⇒
{λxk. F(s1, . . . , sn) ≐? λxk. l(t1, . . . , tm)} ∪ P′;ϑ

where l is not a free variable.

Imitation:

{λxk. F(s1, . . . , sn) ≐? λxk. f (t1, . . . , tm)} ∪ P′;ϑÔ⇒

{λxk. f (λz1
r1
. H1(s1, . . . , sn, z1

r1
), . . . , λzm

rm
. Hm(s1, . . . , sn, zm

rm
))σ

≐? λxk. f (t1, . . . , tm)σ} ∪ P′σ;ϑσ

where

▸ σ = {F ↦ λyn. f (λz1
r1
. H1(yn, z1

r1
), . . . , λzm

rm
. Hm(yn, zm

rm
))},

appropriate imitation binding.

▸ H1, . . . ,Hm are fresh variables.

Higher-Order Preunification Procedure. Rules

Projection:

{λxk. F(s1, . . . , sn) ≐? λxk. l(t1, . . . , tm)} ∪ P′;ϑÔ⇒

{λxk. si(λz1
r1
. H1(s1, . . . , sn, z1

r1
), . . . , λzm

rm
. Hm(s1, . . . , sn, zm

rm
))σ

≐? λxk. l(t1, . . . , tm)σ} ∪ P′σ;ϑσ

where

▸ l is either a constant or one of the bound variables x1, . . . , xk,

▸ σ = {F ↦ λyn. yi(λz1
r1
. H1(yn, z1

r1
), . . . , λzm

rm
. Hm(yn, zm

rm
))},

appropriate projection binding.

▸ H1, . . . ,Hm are fresh variables.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
▸ Create an initial system P; ε.

▸ Apply successively rules from UHOP, building a complete
(finitely branching, but potentially infinite) tree of
derivations.

▸ If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with �, indicating failure.

▸ Successful leaves contain presolved systems.
▸ If ∆;σ is a successful leaf, σ is a solution of P computed by

the higher-order preunification procedure.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
▸ Create an initial system P; ε.
▸ Apply successively rules from UHOP, building a complete

(finitely branching, but potentially infinite) tree of
derivations.

▸ If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with �, indicating failure.

▸ Successful leaves contain presolved systems.
▸ If ∆;σ is a successful leaf, σ is a solution of P computed by

the higher-order preunification procedure.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
▸ Create an initial system P; ε.
▸ Apply successively rules from UHOP, building a complete

(finitely branching, but potentially infinite) tree of
derivations.

▸ If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with �, indicating failure.

▸ Successful leaves contain presolved systems.
▸ If ∆;σ is a successful leaf, σ is a solution of P computed by

the higher-order preunification procedure.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
▸ Create an initial system P; ε.
▸ Apply successively rules from UHOP, building a complete

(finitely branching, but potentially infinite) tree of
derivations.

▸ If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with �, indicating failure.

▸ Successful leaves contain presolved systems.

▸ If ∆;σ is a successful leaf, σ is a solution of P computed by
the higher-order preunification procedure.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
▸ Create an initial system P; ε.
▸ Apply successively rules from UHOP, building a complete

(finitely branching, but potentially infinite) tree of
derivations.

▸ If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with �, indicating failure.

▸ Successful leaves contain presolved systems.
▸ If ∆;σ is a successful leaf, σ is a solution of P computed by

the higher-order preunification procedure.

Higher-Order Preunification. Major Results

Theorem (Soundness)
If P; εÔ⇒∗ ∆;σ and ∆ is in presolved form, then σ∣fvars(P) is a
preunifier of P.

Theorem (Completeness)
If ϑ is a preunifier of P, then there exists a sequence of
transformations P; εÔ⇒∗ ∆;σ such that ∆ is in presolved form,
and σ ⩿fvars(P)

β ϑ.

Higher-Order Preunification. Optimization

▸ The procedure can be optimized by stripping off the binder
λx when x does not occur in the body.

▸ For instance, Elimination rule does not apply to
λx.λy. P(x) ≐? λx.λy. f (a)

▸ After removing λy from both sides, Elimination can be
applied directly.

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}

Ô⇒Tr ∅;{F ↦ λx. x}
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}

Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}

Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Unification problem {F(f (a)) ≐? f (F(a))}.
▸ The preunification procedure enumerates the complete set

of (pre)unifiers that is infinite.
▸ Here we show only two derivations.
{F(f (a)) ≐? f (F(a))}; ε

Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. x}

{F(f (a)) ≐? f (F(a))}; ε
Ô⇒Imit {f (G(f (a))) ≐? f (f (G(a)))};{F ↦ λx. f (G(x))}
Ô⇒Dec {G(f (a)) ≐? f (G(a))};{F ↦ λx. f (G(x))}
Ô⇒Proj {f (a) ≐? f (a)};{F ↦ λx. f (x),G↦ λx. x}
Ô⇒Tr ∅;{F ↦ λx. f (x),G↦ λx. x}

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε
Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};

{F ↦ λy. g(H1(y),H2(y))}
Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}
Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε

Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};
{F ↦ λy. g(H1(y),H2(y))}

Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};
{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};
{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε
Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};

{F ↦ λy. g(H1(y),H2(y))}

Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};
{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};
{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε
Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};

{F ↦ λy. g(H1(y),H2(y))}
Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};
{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε
Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};

{F ↦ λy. g(H1(y),H2(y))}
Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}
Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}.
▸ Here we show only the successful derivation.

{λx. F(f (x,G)) ≐? λx. g(f (x,G1), f (x,G2))}; ε
Ô⇒Imit {λx. g(H1(f (x,G)),H2(f (x,G))) ≐? λx. g(f (x,G1), f (x,G2))};

{F ↦ λy. g(H1(y),H2(y))}
Ô⇒Dec,Proj,Proj {λx. f (x,G) ≐? λx. f (x,G1), λx. f (x,G) ≐? λx. f (x,G2)};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}
Ô⇒Dec,Tr,Dec,Tr {λx. G ≐? λx. G1, λx. G ≐? λx. G2};

{F ↦ λy. g(y, y),H1 ↦ λy. y,H2 ↦ λy. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(x,a) ≐? λx. f (G(a, x))}.
▸ One of the successful derivations.

{{λx. F(x,a) ≐? λx. f (G(a, x))}; ε
Ô⇒Imit {λx. f (H(x,a)) ≐? λx. f (G(a, x))};{F ↦ λy1.λy2. f (H(y1, y2))}
Ô⇒Dec {λx. H(x,a) ≐? λx. G(a, x)};{F ↦ λy1.λy2. f (H(y1, y2))}

Flex-flex.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(x,a) ≐? λx. f (G(a, x))}.
▸ One of the successful derivations.

{{λx. F(x,a) ≐? λx. f (G(a, x))}; ε

Ô⇒Imit {λx. f (H(x,a)) ≐? λx. f (G(a, x))};{F ↦ λy1.λy2. f (H(y1, y2))}
Ô⇒Dec {λx. H(x,a) ≐? λx. G(a, x)};{F ↦ λy1.λy2. f (H(y1, y2))}

Flex-flex.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(x,a) ≐? λx. f (G(a, x))}.
▸ One of the successful derivations.

{{λx. F(x,a) ≐? λx. f (G(a, x))}; ε
Ô⇒Imit {λx. f (H(x,a)) ≐? λx. f (G(a, x))};{F ↦ λy1.λy2. f (H(y1, y2))}

Ô⇒Dec {λx. H(x,a) ≐? λx. G(a, x)};{F ↦ λy1.λy2. f (H(y1, y2))}
Flex-flex.

Higher-Order Preunification. Examples

Example

▸ Problem {λx. F(x,a) ≐? λx. f (G(a, x))}.
▸ One of the successful derivations.

{{λx. F(x,a) ≐? λx. f (G(a, x))}; ε
Ô⇒Imit {λx. f (H(x,a)) ≐? λx. f (G(a, x))};{F ↦ λy1.λy2. f (H(y1, y2))}
Ô⇒Dec {λx. H(x,a) ≐? λx. G(a, x)};{F ↦ λy1.λy2. f (H(y1, y2))}

Flex-flex.

Decidable Subcases

Some decidable subcases of higher-order unification:
▸ Monadic second-order unification. Terms do not contain

constants of arity greater than 1.
Example: {λx.f (F(x)) ≐? λx.F(f (x))}.

▸ Second-order unification with linear occurrences of
second-order variables.

▸ Context unification.
▸ Linear second-order unification.
▸ Bounded second-order unification.

Decidable Subcases

Some decidable subcases of higher-order unification:
▸ Unification with higher-order patterns. Pattern is a term t

such that for every subterm of the form F(s1, . . . , sn), the s’s
are distinct variables bound in t.
Example: {λx.λy. F(x) ≐? λx.λy. c(G(y, x))}.

▸ Higher-order matching. One side in the equations is a
closed term.
Example. {λx. F(x, λy. y) ≐? λx.f (x,a)}.

	Introduction
	Preliminaries
	Higher-Order Unification Procedure

