Introduction to Unification Theory
 Solving Systems of Linear Diophantine Equations

Temur Kutsia
RISC, Johannes Kepler University Linz kutsia@risc.jku.at

ACU-Unification

- We saw an example how to solve ACU-unification problem.
- Reduction to systems of linear Diophantine equations (LDEs) over natural numbers.

Elementary ACU-Unification

- Elementary ACU-unification problem

$$
\left\{f(x, f(x, y)) \doteq ?{ }_{A C U} f(z, f(z, z))\right\}
$$

reduces to homogeneous linear Diophantine equation

$$
2 x+y=3 z .
$$

- Each equation in the unification problem gives rise to one linear Diophantine equation.
- A most general ACU-unifier is obtained by combining all the unifiers corresponding to the minimal solutions of the system of LDEs.

Elementary ACU-Unification

- $\Gamma=\left\{f(x, f(x, y)) \doteq{ }_{A C U} f(z, f(z, z))\right\}$ and $S=\{2 x+y=3 z\}$.
- S has three minimal solutions: $(1,1,1),(0,3,1),(3,0,2)$.
- Three unifiers of Γ :

$$
\begin{aligned}
& \sigma_{1}=\left\{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\right\} \\
& \sigma_{2}=\left\{x \mapsto e, y \mapsto f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right), z \mapsto v_{2}\right\} \\
& \sigma_{3}=\left\{x \mapsto f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right), y \mapsto e, z \mapsto f\left(v_{3}, v_{3}\right)\right\}
\end{aligned}
$$

- A most general unifier of Γ :

$$
\begin{aligned}
\sigma=\{ & x \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), y \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right), \\
& \left.z \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\}
\end{aligned}
$$

ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\left\{f(x, f(x, y)) \doteq \doteq_{A C U} f(a, f(z, f(z, z)))\right\}
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\} .
$$

- The minimal nontrivial natural solutions of S are $(0,1,0)$ and $(2,0,1)$.

ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\left\{f(x, f(x, y)) \doteq_{A C U}^{?} f(a, f(z, f(z, z)))\right\}
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\}
$$

- Every natural solution of S is obtained by as the sum of one of the minimal solution and a solution of the corresponding homogeneous LDE $2 x+y=3 z$.
- One element of the minimal complete set of unifiers of Γ is obtained from the combination of one minimal solution of S with the set of all minimal solutions of $2 x+y=3 z$.

ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\left\{f(x, f(x, y)) \doteq{ }_{A C U} f(a, f(z, f(z, z)))\right\}
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\}
$$

- The minimal complete set of unifiers of Γ is $\left\{\sigma_{1}, \sigma_{2}\right\}$, where

$$
\begin{aligned}
\sigma_{1}=\{x & \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), \\
y & \mapsto f\left(a, f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right),\right. \\
z & \left.\mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\} \\
\sigma_{2}=\{x & \mapsto f\left(a, f\left(a, f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right)\right)\right), \\
y & \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right),\right. \\
z & \left.\mapsto f\left(a, f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right)\right\}
\end{aligned}
$$

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:
Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations. Information and Computation 113(1): 143-172 (1994).

Generalizes Fortenbacher's Algorithm for solving a single equation:
围 Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).

Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

$$
\left\{\begin{array}{cccc}
a_{11} x_{1} & +\cdots+ & a_{1 n} x_{n} & = \\
\vdots & \vdots & & 0 \\
a_{m 1} x_{1} & +\cdots+ & a_{m n} x_{n} & =
\end{array}\right.
$$

- $a_{i j}$'s are integers.
- Looking for nontrivial natural solutions.

Homogeneous Case

Example

$$
\left\{\begin{array}{r}
-x_{1}+x_{2}+2 x_{3}-3 x_{4}=0 \\
-x_{1}+3 x_{2}-2 x_{3}-x_{4}=0
\end{array}\right.
$$

Nontrivial solutions:

$$
\begin{aligned}
& \triangleright s_{1}=(0,1,1,1) \\
& s_{2}=(4,2,1,0) \\
& s_{3}=(0,2,2,2)=2 s_{1} \\
& s_{4}=(8,4,2,0)=2 s_{2} \\
& s_{5}=(4,3,2,1)=s_{1}+s_{2} \\
& s_{6}=(8,5,3,1)=s_{1}+2 s_{2}
\end{aligned}
$$

Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

$$
\left\{\begin{array}{cccc}
a_{11} x_{1} & +\cdots+ & a_{1 n} x_{n} & = \\
0 \\
\vdots & & \vdots & \\
a_{m 1} x_{1} & +\cdots+ & a_{m n} x_{n} & = \\
0
\end{array}\right.
$$

- $a_{i j}$'s are integers.
- Looking for a basis in the set of nontrivial natural solutions.
- Does it exist?

Homogeneous Case

The basis in the set S of nontrivial natural solutions of a homogeneous LDS is the set of \gg-minimal elements S.
\gg is the ordering on tuples of natural numbers:

$$
\left(x_{1}, \ldots, x_{n}\right) \gg\left(y_{1}, \ldots, y_{n}\right)
$$

if and only if

- $x_{i} \geq y_{i}$ for all $1 \leq i \leq n$ and
- $x_{i}>y_{i}$ for some $1 \leq i \leq n$.

Matrix Form

Homogeneous linear Diophantine system with m equations and n variables:

$$
A x_{\downarrow}=0_{\downarrow},
$$

where

$$
A:=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \quad x_{\downarrow}:=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad 0_{\downarrow}:=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Matrix Form

- Canonical basis in $\mathbb{N}^{n}:\left(e_{1 \downarrow}, \ldots, e_{n \downarrow}\right)$.
- $e_{j_{\downarrow}}=\left(\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right)$, with 1 in j 's row.
- Then $A x_{\downarrow}=x_{1} A e_{\downarrow \downarrow}+\cdots+x_{n} A e_{n \downarrow}$.

Matrix Form

- a : The linear mapping associated to A.

$$
a\left(x_{\downarrow}\right)=\left(\begin{array}{ccc}
a_{11} x_{1} & +\cdots+ & a_{1 n} x_{n} \\
\vdots & & \vdots \\
a_{m 1} x_{1} & +\cdots+ & a_{m n} x_{n}
\end{array}\right)=x_{1} a\left(e_{1 \downarrow}\right)+\cdots+x_{n} a\left(e_{n \downarrow}\right)
$$

Single Equation: Idea

Case $m=1$: Single homogeneous LDE $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$. Fortenbacher's idea:

- Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^{n}.
- Suppose the current vector v_{\downarrow} is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- To decrease the search space, the following restrictions can be imposed:
- If $a\left(v_{\downarrow}\right)>0$, then increase by one some v_{j} with $a_{j}<0$.
- If $a\left(v_{\downarrow}\right)<0$, then increase by one some v_{j} with $a_{j}>0$.
- (If $a\left(v_{\downarrow}\right) a\left(e_{j_{\downarrow}}\right)<0$ for some j, increase v_{j} by one.)

Single Equation: Geometric Interpretation of the Idea

- Fortenbacher's condition If $a\left(v_{\downarrow}\right) a\left(e_{\downarrow}\right)<0$ for some j, increase v_{j} by one.
- Increasing v_{j} by one: $a\left(v_{\downarrow}+e_{j_{\downarrow}}\right)=a\left(v_{\downarrow}\right)+a\left(e_{j_{\downarrow}}\right)$.
- Going to the "right direction", towards the origin.

Single Equation: Algorithm

Case $m=1$: Single homogeneous LDE $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$. Fortenbacher's algorithm:

- Start with the pair P, M of the set of potential solutions $P=\left\{e_{1 \downarrow}, \ldots, e_{n_{\downarrow}}\right\}$ and the set of minimal nontrivial solutions $M=\emptyset$.
- Apply repeatedly the rules:

1. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime}, M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
2. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime},\left\{v_{\downarrow}\right\} \cup M$, if $a\left(v_{\downarrow}\right)=0$ and rule 1 is not applicable.
3. $P, M \Longrightarrow\left\{v_{\downarrow}+e_{j_{\downarrow}} \mid v_{\downarrow} \in P, a\left(v_{\downarrow}\right) a\left(e_{j_{\downarrow}}\right)<0, j \in 1 . . n\right\}, M$, if rules 1 and 2 are not applicable.

- If \emptyset, M is reached, return M.

System of Equations: Idea

- General case: System of homogeneous LDEs.
- $a\left(x_{\downarrow}\right)=0_{\downarrow}$.
- Generalizing Fortenbacher's idea:
- Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^{n}.
- Suppose the current vector v_{\downarrow} is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- To decrease the search space, increase only those components that lead to the "right direction".

System of Equations: How to Restrict

- "Right direction": Towards the origin.
- If $a\left(v_{\downarrow}\right) \neq 0_{\downarrow}$, then do $a\left(v_{\downarrow}+e_{j_{\downarrow}}\right)=a\left(v_{\downarrow}\right)+a\left(e_{j_{\downarrow}}\right)$.
- $a\left(v_{\downarrow}\right)+a\left(e_{\downarrow}\right)$ should lie in the half-space containing O.
- Contejean-Devie condition: If $a\left(v_{\downarrow}\right) \cdot a\left(e_{j_{\downarrow}}\right)<0$ for some j, increase v_{j} by one. (. is the scalar product.)

How to Restrict: Comparison

- Fortenbacher's condition If $a\left(v_{\downarrow}\right) a\left(e_{\downarrow}\right)<0$ for some j, increase v_{j} by one.
- Contejean-Devie condition If $a\left(v_{\downarrow}\right) \cdot a\left(e_{\downarrow}\right)<0$ for some j, increase v_{j} by one.

How to Restrict: Comparison

Fortenbacher's condition

Contejean-Devie condition

System of Equations: Algorithm

System of homogeneous LDEs: $a\left(x_{\downarrow}\right)=0_{\downarrow}$.
Contejean-Devie algorithm:

- Start with the pair P, M where
- $P=\left\{e_{1 \downarrow}, \ldots, e_{n_{\downarrow}}\right\}$ is the set of potential solutions,
- $M=\emptyset$ is the set of minimal nontrivial solutions.
- Apply repeatedly the rules:

1. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime}, M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
2. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime},\left\{v_{\downarrow}\right\} \cup M$, if $a\left(v_{\downarrow}\right)=0_{\downarrow}$ and rule 1 is not applicable.
3. $P, M \Longrightarrow\left\{v_{\downarrow}+e_{j_{\downarrow}} \mid v_{\downarrow} \in P, a\left(v_{\downarrow}\right) \cdot a\left(e_{j_{\downarrow}}\right)<0, j \in 1 . . n\right\}, M$, if rules 1 and 2 are not applicable.

- If \emptyset, M is reached, return M.

Contejean-Devie Algorithm on an Example

$$
\begin{gathered}
\left\{\begin{array}{c}
-x_{1}+x_{2}+2 x_{3}-3 x_{4}=0 \\
-x_{1}+3 x_{2}-2 x_{3}-x_{4}=0
\end{array}\right. \\
e_{1 \downarrow}=(1,0,0,0)^{T} \quad e_{2 \downarrow}=(0,1,0,0)^{T} \\
e_{3 \downarrow}=(0,0,1,0)^{T} \quad e_{4 \downarrow}=(0,0,0,1)^{T}
\end{gathered}
$$

Start: $\left\{e_{1 \downarrow}, \ldots, e_{4 \downarrow}\right\}, \emptyset$.

1. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime}, M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
2. $\left\{v_{\downarrow}\right\} \cup P^{\prime}, M \Longrightarrow P^{\prime},\left\{v_{\downarrow}\right\} \cup M$, if $a\left(v_{\downarrow}\right)=0_{\downarrow}$ and rule 1 is not applicable.
3. $P, M \Longrightarrow\left\{v_{\downarrow}+e_{j_{\downarrow}} \mid v_{\downarrow} \in P\right.$, $\left.a\left(v_{\downarrow}\right) \cdot a\left(e_{j}\right)<0, j \in 1 . . n\right\}, M$, if rules 1 and 2 are not applicable.

Contejean-Devie Algorithm on an Example

Properties of the Algorithm

$a\left(x_{\downarrow}\right)=0_{\downarrow}$: An n-variate system of homogeneous LDEs.
$\left(e_{1 \downarrow}, \ldots, e_{n \downarrow}\right)$: The canonical basis of \mathbb{N}^{n}.
$\mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right)$: Basis in the set of nontrivial natural solutions of $a\left(x_{\downarrow}\right)=0_{\downarrow}$.

Theorem

- The Contejean-Devie algorithm terminates on any input.
- Let $\left(e_{1 \downarrow}, \ldots, e_{n \downarrow}\right), \emptyset \Longrightarrow^{*} \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a\left(x_{\downarrow}\right)=0_{\downarrow}$. Then

$$
\mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right)=M
$$

Notation

- $\left\|x_{\downarrow}\right\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
- $\left|\left(s_{1}, \ldots, s_{n}\right)\right|=s_{1}+\cdots+s_{n}$.

Completeness

Theorem
Let $P_{0}, M_{0} \Longrightarrow^{*} \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a\left(x_{\downarrow}\right)=0_{\downarrow}$ with $P_{0}=\left(e_{1 \downarrow}, \ldots, e_{\downarrow \downarrow}\right)$ and $M_{0}=\emptyset$. Then $\mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right) \subseteq M$.

Proof.

Assume $s_{\downarrow} \in \mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right)$ and show that there exists a sequence of vectors
$v_{1 \downarrow}=e_{j_{\downarrow} \downarrow} \ll \cdots \ll v_{k \downarrow} \ll v_{k+1 \downarrow}=v_{k \downarrow}+e_{j_{k \downarrow}} \ll \cdots \ll v_{\left|s_{\downarrow}\right|_{\downarrow}}=s_{\downarrow}$
such that $v_{i \downarrow} \in P_{l_{i}}$, where $P_{l_{i}}$ is from the given sequence of transformations and $l_{i}<l_{j}$ for $i<j$.

Completeness

Theorem
Let $P_{0}, M_{0} \Longrightarrow^{*} \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a\left(x_{\downarrow}\right)=0_{\downarrow}$ with $P_{0}=\left(e_{1 \downarrow}, \ldots, e_{\downarrow \downarrow}\right)$ and $M_{0}=\emptyset$. Then $\mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right) \subseteq M$.

Proof (cont.)

For $e_{j 0_{\downarrow}}$, any basic vector $\ll s_{\downarrow}$ can be chosen. Such basic vectors do exist (since $s_{\downarrow} \neq 0_{\downarrow}$) and are in P_{0}. Assume now we have $v_{1 \downarrow} \ll \cdots \ll v_{k \downarrow} \ll s_{\downarrow}$ with $v_{k \downarrow} \in P_{l_{k}}$. Then there exists $s_{k \downarrow}$ with $s_{\downarrow}=v_{k \downarrow}+s_{k \downarrow}$ and
$0=\left\|a\left(s_{\downarrow}\right)\right\|^{2}=\left\|a\left(v_{k \downarrow}\right)\right\|^{2}+\left\|a\left(s_{k \downarrow}\right)\right\|^{2}+2 a\left(v_{k \downarrow}\right) \cdot a\left(s_{k \downarrow}\right)$, which implies $a\left(v_{k \downarrow}\right) \cdot a\left(s_{k \downarrow}\right)<0$.

Completeness

Theorem
Let $P_{0}, M_{0} \Longrightarrow^{*} \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a\left(x_{\downarrow}\right)=0_{\downarrow}$ with $P_{0}=\left(e_{1 \downarrow}, \ldots, e_{n \downarrow}\right)$ and $M_{0}=\emptyset$. Then $\mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right) \subseteq M$.

Proof (cont.)

Hence, there exists $e_{j_{k \downarrow}}$ with $s_{k \downarrow} \gg e_{j_{k \downarrow}}$ such that $a\left(v_{k \downarrow}\right) \cdot a\left(e_{j_{k \downarrow}}\right)<0$. We take $v_{k+1 \downarrow}=v_{k \downarrow}+e_{j_{k \downarrow}}$. Then $s_{\downarrow} \gg v_{k+1 \downarrow}$ and by rule $3, v_{k+1 \downarrow} \in P_{l_{k+1}}$. After $\left|s_{\downarrow}\right|$ steps, we reach s. Hence, $s_{\downarrow} \in P_{l_{|s|}}$. Since $a\left(s_{\downarrow}\right)=0$, application of rule 2 moves s_{\downarrow} to M.

Soundness

Theorem
Let $P_{0}, M_{0} \Longrightarrow^{*} \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a\left(x_{\downarrow}\right)=0_{\downarrow}$ with $P_{0}=\left(e_{1 \downarrow}, \ldots, e_{\eta \downarrow}\right)$ and $M_{0}=\emptyset$. Then $M \subseteq \mathcal{B}\left(a\left(x_{\downarrow}\right)=0_{\downarrow}\right)$.

Proof.
Any $s_{\downarrow} \in M$ is a solution. Show that it is minimal. Assume it is not: $s_{\downarrow}=s_{1 \downarrow}+s_{2 \downarrow}$, where $s_{1 \downarrow}$ and $s_{2 \downarrow}$ are non-null solutions smaller than s. Assume s_{\downarrow} was obtained during the transformations as $s_{\downarrow}=v_{i \downarrow}+e_{j_{i \downarrow}}$, where $v_{i \downarrow} \in P_{i}$. But then $v_{i \downarrow} \gg s_{1 \downarrow}$ or $v_{i \downarrow}=s_{1 \downarrow}$ or $v_{i \downarrow} \gg s_{2 \downarrow}$ or $v_{i \downarrow}=s_{1 \downarrow}$ and $v_{i \downarrow}$ is greater than an already computed minimal solution. Therefore, it should have been removed from P_{i}. A contradiction.

Termination

Theorem
Let $v_{1 \downarrow}, v_{2 \downarrow}, \ldots$ be an infinite sequence satisfying the Contejean-Devie condition for $a\left(x_{\downarrow}\right)=0_{\downarrow}$:

- u_{1} is a basic vector and for each $i \geq 1$ there exists $1 \leq j \leq n$ such that $a\left(v_{i \downarrow}\right) \cdot a\left(e_{j_{\downarrow}}\right)<0$ and $v_{i+1 \downarrow}=v_{i \downarrow}+e_{j_{\downarrow}}$.
Then there exist v_{\downarrow} and k such that
- v_{\downarrow} is a solution of $a\left(x_{\downarrow}\right)=0_{\downarrow}$, and
- $v_{\downarrow} \ll v_{k \downarrow}$.

Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations and n variables:

$$
\left\{\begin{array}{cccc}
a_{11} x_{1}+\cdots+ & a_{1 n} x_{n} & = & b_{1} \\
\vdots & \vdots & & \vdots \\
a_{m 1} x_{1}+\cdots+ & a_{m n} x_{n} & = & b_{m}
\end{array}\right.
$$

- a 's and b 's are integers.
- Matrix form: $a\left(x_{\downarrow}\right)=b_{\downarrow}$.

Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S_{0} :

$$
\left\{\begin{array}{ccccccc}
-b_{1} x_{0} & + & a_{11} x_{1} & + & \cdots & + & a_{1 n} x_{n}
\end{array}=\begin{array}{c}
0 \\
\vdots
\end{array}\right.
$$

- Solve S_{0} and keep only the solutions with $x_{0} \leq 1$.
- $x_{0}=1$: a minimal solution for $a\left(x_{\downarrow}\right)=b_{\downarrow}$.
- $x_{0}=0$: a minimal solution for $a\left(x_{\downarrow}\right)=0_{\downarrow}$.
- Any solution of the non-homogeneous system $a\left(x_{\downarrow}\right)=b_{\downarrow}$ has the form $x_{\downarrow}+y_{\downarrow}$ where:
- x_{\downarrow} is a minimal solution of $a\left(x_{\downarrow}\right)=b_{\downarrow}$.
- y_{\downarrow} is a linear combination (with natural coefficients) of minimal solutions of $a\left(x_{\downarrow}\right)=0_{\downarrow}$.

Back to ACU-Unification

Theorem
The decision problem for ACU-Matching and ACU-unification is NP-complete.

