Introduction to Unification Theory Solving Systems of Linear Diophantine Equations

Temur Kutsia

RISC, Johannes Kepler University Linz kutsia@risc.jku.at

ACU-Unification

- ▶ We saw an example how to solve ACU-unification problem.
- Reduction to systems of linear Diophantine equations (LDEs) over natural numbers.

Elementary ACU-Unification

Elementary ACU-unification problem

$$\{f(x, f(x,y)) \stackrel{?}{=}_{ACU}^? f(z, f(z,z))\}$$

reduces to homogeneous linear Diophantine equation

$$2x + y = 3z.$$

- ► Each equation in the unification problem gives rise to one linear Diophantine equation.
- A most general ACU-unifier is obtained by combining all the unifiers corresponding to the minimal solutions of the system of LDEs.

Elementary ACU-Unification

- $\Gamma = \{ f(x, f(x, y)) \stackrel{?}{=}_{ACU}^{?} f(z, f(z, z)) \} \text{ and } S = \{ 2x + y = 3z \}.$
- ▶ S has three minimal solutions: (1, 1, 1), (0, 3, 1), (3, 0, 2).
- ▶ Three unifiers of Γ :

$$\sigma_{1} = \{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\}
\sigma_{2} = \{x \mapsto e, y \mapsto f(v_{2}, f(v_{2}, v_{2})), z \mapsto v_{2}\}
\sigma_{3} = \{x \mapsto f(v_{3}, f(v_{3}, v_{3})), y \mapsto e, z \mapsto f(v_{3}, v_{3})\}$$

▶ A most general unifier of Γ :

$$\sigma = \{x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))), z \mapsto f(v_1, f(v_2, f(v_3, v_3)))\}$$

ACU-Unification with constants

► ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \stackrel{?}{=}_{ACU}^? f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

▶ The minimal nontrivial natural solutions of S are (0,1,0) and (2,0,1).

ACU-Unification with constants

ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \stackrel{?}{=}_{ACU}^{?} f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

- ▶ Every natural solution of S is obtained by as the sum of one of the minimal solution and a solution of the corresponding homogeneous LDE 2x + y = 3z.
- ▶ One element of the minimal complete set of unifiers of Γ is obtained from the combination of one minimal solution of S with the set of all minimal solutions of 2x + y = 3z.

ACU-Unification with constants

► ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \stackrel{!}{=}_{ACU}^? f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

▶ The minimal complete set of unifiers of Γ is $\{\sigma_1, \sigma_2\}$, where

$$\sigma_{1} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), y \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), z \mapsto f(v_{1}, f(v_{2}, f(v_{3}, v_{3})))\} \sigma_{2} = \{x \mapsto f(a, f(a, f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))))), y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2})), z \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{3}, v_{3}))))\}$$

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie.

An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.

Information and Computation 113(1): 143–172 (1994).

Generalizes Fortenbacher's Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher.

Efficient Solution of Linear Diophantine Equations.

J. Symbolic Computation 8(1,2): 201–216 (1989).

Homogeneous linear Diophantine system with m equations and n variables:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

- $ightharpoonup a_{ij}$'s are integers.
- Looking for nontrivial natural solutions.

Example

$$\begin{cases} - & x_1 + x_2 + 2x_3 - 3x_4 = 0 \\ - & x_1 + 3x_2 - 2x_3 - x_4 = 0 \end{cases}$$

Nontrivial solutions:

$$ightharpoonup s_1 = (0, 1, 1, 1)$$

$$s_2 = (4, 2, 1, 0)$$

$$s_3 = (0, 2, 2, 2) = 2s_1$$

$$s_4 = (8, 4, 2, 0) = 2s_2$$

$$b s_5 = (4,3,2,1) = s_1 + s_2$$

$$s_6 = (8, 5, 3, 1) = s_1 + 2s_2$$

Homogeneous linear Diophantine system with m equations and n variables:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

- $ightharpoonup a_{ij}$'s are integers.
- ▶ Looking for a basis in the set of nontrivial natural solutions.
- Does it exist?

The basis in the set S of nontrivial natural solutions of a homogeneous LDS is the set of \gg -minimal elements S.

≫ is the ordering on tuples of natural numbers:

$$(x_1,\ldots,x_n)\gg(y_1,\ldots,y_n)$$

if and only if

- $x_i \ge y_i$ for all $1 \le i \le n$ and
- $ightharpoonup x_i > y_i$ for some $1 \le i \le n$.

Matrix Form

Homogeneous linear Diophantine system with m equations and n variables:

$$Ax_{\downarrow} = 0_{\downarrow},$$

where

$$A := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \quad x_{\downarrow} := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad 0_{\downarrow} := \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Matrix Form

▶ Canonical basis in \mathbb{N}^n : $(e_{1\downarrow}, \dots, e_{n\downarrow})$.

▶ Then $Ax_{\downarrow} = x_1 Ae_{1\downarrow} + \cdots + x_n Ae_{n\downarrow}$.

Matrix Form

ightharpoonup a: The linear mapping associated to A.

$$a(x_{\downarrow}) = \begin{pmatrix} a_{11}x_1 & + \dots + & a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 & + \dots + & a_{mn}x_n \end{pmatrix} = x_1a(e_{1\downarrow}) + \dots + x_na(e_{n\downarrow}).$$

Single Equation: Idea

Case m=1: Single homogeneous LDE $a_1x_1 + \cdots + a_nx_n = 0$. Fortenbacher's idea:

- Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^n .
- ▶ Suppose the current vector v_{\downarrow} is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- ➤ To decrease the search space, the following restrictions can be imposed:
 - ▶ If $a(v_{\downarrow}) > 0$, then increase by one some v_j with $a_j < 0$.
 - ▶ If $a(v_{\downarrow}) < 0$, then increase by one some v_i with $a_i > 0$.
 - ▶ (If $a(v_{\downarrow})a(e_{j_{\downarrow}}) < 0$ for some j, increase v_j by one.)

Single Equation: Geometric Interpretation of the Idea

- ► Fortenbacher's condition If $a(v_{\downarrow})a(e_{j_{\perp}}) < 0$ for some j, increase v_j by one.
- ▶ Increasing v_j by one: $a(v_{\downarrow} + e_{j_{\downarrow}}) = a(v_{\downarrow}) + a(e_{j_{\downarrow}}).$
- ▶ Going to the "right direction", towards the origin.

Single Equation: Algorithm

Case m = 1: Single homogeneous LDE $a_1x_1 + \cdots + a_nx_n = 0$. Fortenbacher's algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_{1\downarrow}, \dots, e_{n\downarrow}\}$ and the set of minimal nontrivial solutions $M = \emptyset$.
- Apply repeatedly the rules:
 - 1. $\{v_{\downarrow}\} \cup P', M \Longrightarrow P', M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
 - 2. $\{v_{\downarrow}\} \cup P', M \Longrightarrow P', \{v_{\downarrow}\} \cup M,$ if $a(v_{\downarrow}) = 0$ and rule 1 is not applicable.
 - 3. $P, M \Longrightarrow \{v_{\downarrow} + e_{j_{\downarrow}} \mid v_{\downarrow} \in P, a(v_{\downarrow})a(e_{j_{\downarrow}}) < 0, j \in 1..n\}, M$, if rules 1 and 2 are not applicable.
- ▶ If \emptyset , M is reached, return M.

System of Equations: Idea

- General case: System of homogeneous LDEs.
- $a(x_{\downarrow}) = 0_{\downarrow}.$
- Generalizing Fortenbacher's idea:
 - Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^n .
 - ▶ Suppose the current vector v_{\downarrow} is not a solution.
 - ▶ It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
 - ► To decrease the search space, increase only those components that lead to the "right direction".

System of Equations: How to Restrict

- "Right direction": Towards the origin.
- ▶ If $a(v_{\downarrow}) \neq 0_{\downarrow}$, then do $a(v_{\downarrow} + e_{j_{\downarrow}}) = a(v_{\downarrow}) + a(e_{j_{\downarrow}})$.
- ▶ $a(v_{\downarrow}) + a(e_{j_{\perp}})$ should lie in the half-space containing O.
- ▶ Contejean-Devie condition: If $a(v_{\downarrow}) \cdot a(e_{j_{\downarrow}}) < 0$ for some j, increase v_j by one. (· is the scalar product.)

How to Restrict: Comparison

- ► Fortenbacher's condition If $a(v_{\downarrow})a(e_{j_{\perp}}) < 0$ for some j, increase v_j by one.
- ▶ Contejean-Devie condition If $a(v_{\downarrow}) \cdot a(e_{j_{\perp}}) < 0$ for some j, increase v_j by one.

How to Restrict: Comparison

Fortenbacher's condition

0	$a(v_{\downarrow})$		Forbidden
·		$a(e_{j\downarrow})$	direction

Contejean-Devie condition

System of Equations: Algorithm

System of homogeneous LDEs: $a(x_{\downarrow}) = 0_{\downarrow}$.

Contejean-Devie algorithm:

- Start with the pair P, M where
 P = {e_{1⊥},...,e_{n⊥}} is the set of potential solutions,
 - $M = \emptyset$ is the set of minimal nontrivial solutions.
- Apply repeatedly the rules:
 - 1. $\{v_{\downarrow}\} \cup P', M \Longrightarrow P', M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
 - 2. $\{v_{\downarrow}\} \cup P', M \Longrightarrow P', \{v_{\downarrow}\} \cup M,$ if $a(v_{\downarrow}) = 0_{\downarrow}$ and rule 1 is not applicable.
 - 3. $P, M \Longrightarrow \{v_{\downarrow} + e_{j_{\downarrow}} \mid v_{\downarrow} \in P, \ a(v_{\downarrow}) \cdot a(e_{j_{\downarrow}}) < 0, \ j \in 1..n\}, M$, if rules 1 and 2 are not applicable.
- ▶ If \emptyset , M is reached, return M.

Contejean-Devie Algorithm on an Example

$$\begin{cases}
-x_1 + x_2 + 2x_3 - 3x_4 = 0 \\
-x_1 + 3x_2 - 2x_3 - x_4 = 0
\end{cases}$$

$$e_{1\downarrow} = (1, 0, 0, 0)^T \quad e_{2\downarrow} = (0, 1, 0, 0)^T$$

$$e_{3\downarrow} = (0, 0, 1, 0)^T \quad e_{4\downarrow} = (0, 0, 0, 1)^T$$

 $\mathsf{Start}:\{e_{1\downarrow},\ldots,e_{4\downarrow}\},\emptyset.$

- 1. $\{v_{\downarrow}\} \cup P', M \Longrightarrow P', M$, if $v_{\downarrow} \gg u_{\downarrow}$ for some $u_{\downarrow} \in M$.
- $\begin{array}{l} 2. \ \ \{v_{\downarrow}\} \cup P', M \Longrightarrow P', \{v_{\downarrow}\} \cup M, \\ \text{if } a(v_{\downarrow}) = 0_{\downarrow} \text{ and rule 1 is not} \\ \text{applicable}. \end{array}$
- $\begin{array}{l} \text{3.} \ \ P, M \Longrightarrow \{v_{\downarrow} + e_{j_{\downarrow}} \mid v_{\downarrow} \in P, \\ a(v_{\downarrow}) \cdot a(e_{j_{\downarrow}}) < 0, \ j \in 1..n\}, M, \\ \text{if rules 1 and 2 are not applicable.} \end{array}$

Contejean-Devie Algorithm on an Example

Properties of the Algorithm

- $a(x_{\downarrow})=0_{\downarrow}$: An n-variate system of homogeneous LDEs.
- $(e_{1\downarrow},\ldots,e_{n\downarrow})$: The canonical basis of \mathbb{N}^n .
- $\mathcal{B}(a(x_\downarrow)=0_\downarrow)$. Basis in the set of nontrivial natural solutions of $a(x_\downarrow)=0_\downarrow$.

Theorem

- The Contejean-Devie algorithm terminates on any input.
- ▶ Let $(e_{1\downarrow}, \dots, e_{n\downarrow}), \emptyset \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x_{\downarrow}) = 0_{\downarrow}$. Then

$$\mathcal{B}(a(x_{\downarrow}) = 0_{\downarrow}) = M.$$

Notation

$$\|x_{\downarrow}\| = \sqrt{x_1^2 + \dots + x_n^2}.$$

$$|(s_1,\ldots,s_n)| = s_1 + \cdots + s_n.$$

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x_\downarrow) = 0_\downarrow$ with $P_0 = (e_{1\downarrow}, \dots, e_{n\downarrow})$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x_\downarrow) = 0_\downarrow) \subseteq M$.

Proof.

Assume $s_{\downarrow} \in \mathcal{B}(a(x_{\downarrow})=0_{\downarrow})$ and show that there exists a sequence of vectors

$$v_{1\downarrow} = e_{j_0\downarrow} \ll \cdots \ll v_{k\downarrow} \ll v_{k+1\downarrow} = v_{k\downarrow} + e_{j_{k\downarrow}} \ll \cdots \ll v_{|s_{\downarrow}|_{\downarrow}} = s_{\downarrow}$$

such that $v_{i\downarrow} \in P_{l_i}$, where P_{l_i} is from the given sequence of transformations and $l_i < l_j$ for i < j.

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x_\downarrow) = 0_\downarrow$ with $P_0 = (e_{1\downarrow}, \dots, e_{n\downarrow})$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x_\downarrow) = 0_\downarrow) \subseteq M$.

Proof (cont.)

For $e_{j0\downarrow}$, any basic vector $\ll s_{\downarrow}$ can be chosen. Such basic vectors do exist (since $s_{\downarrow} \neq 0_{\downarrow}$) and are in P_0 . Assume now we have $v_{1\downarrow} \ll \cdots \ll v_{k\downarrow} \ll s_{\downarrow}$ with $v_{k\downarrow} \in P_{l_k}$. Then there exists $s_{k\downarrow}$ with $s_{\downarrow} = v_{k\downarrow} + s_{k\downarrow}$ and $0 = \|a(s_{\downarrow})\|^2 = \|a(v_{k\downarrow})\|^2 + \|a(s_{k\downarrow})\|^2 + 2a(v_{k\downarrow}) \cdot a(s_{k\downarrow})$, which implies $a(v_{k\downarrow}) \cdot a(s_{k\downarrow}) < 0$.

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x_\downarrow) = 0_\downarrow$ with $P_0 = (e_{1\downarrow}, \dots, e_{n\downarrow})$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x_\downarrow) = 0_\downarrow) \subseteq M$.

Proof (cont.)

Hence, there exists $e_{j_k\downarrow}$ with $s_{k\downarrow}\gg e_{j_k\downarrow}$ such that $a(v_{k\downarrow})\cdot a(e_{j_k\downarrow})<0$. We take $v_{k+1\downarrow}=v_{k\downarrow}+e_{j_k\downarrow}$. Then $s_{\downarrow}\gg v_{k+1\downarrow}$ and by rule 3, $v_{k+1\downarrow}\in P_{l_{k+1}}$. After $|s_{\downarrow}|$ steps, we reach s. Hence, $s_{\downarrow}\in P_{l_{|s|}}$. Since $a(s_{\downarrow})=0$, application of rule 2 moves s_{\downarrow} to M.

Soundness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x_\downarrow) = 0_\downarrow$ with $P_0 = (e_{1\downarrow}, \dots, e_{n\downarrow})$ and $M_0 = \emptyset$. Then $M \subseteq \mathcal{B}(a(x_\downarrow) = 0_\downarrow)$.

Proof.

Any $s_{\downarrow} \in M$ is a solution. Show that it is minimal. Assume it is not: $s_{\downarrow} = s_{1\downarrow} + s_{2\downarrow}$, where $s_{1\downarrow}$ and $s_{2\downarrow}$ are non-null solutions smaller than s. Assume s_{\downarrow} was obtained during the transformations as $s_{\downarrow} = v_{i\downarrow} + e_{j_{i\downarrow}}$, where $v_{i\downarrow} \in P_i$. But then $v_{i\downarrow} \gg s_{1\downarrow}$ or $v_{i\downarrow} = s_{1\downarrow}$ or $v_{i\downarrow} \gg s_{2\downarrow}$ or $v_{i\downarrow} = s_{1\downarrow}$ and $v_{i\downarrow}$ is greater than an already computed minimal solution. Therefore, it should have been removed from P_i . A contradiction.

Termination

Theorem

Let $v_{1\downarrow}, v_{2\downarrow}, \ldots$ be an infinite sequence satisfying the Contejean-Devie condition for $a(x_{\downarrow}) = 0_{\downarrow}$:

▶ u_1 is a basic vector and for each $i \ge 1$ there exists $1 \le j \le n$ such that $a(v_{i\downarrow}) \cdot a(e_{j\downarrow}) < 0$ and $v_{i+1\downarrow} = v_{i\downarrow} + e_{j\downarrow}$.

Then there exist v_{\downarrow} and k such that

- v_{\downarrow} is a solution of $a(x_{\downarrow}) = 0_{\downarrow}$, and
- $v_{\downarrow} \ll v_{k\downarrow}$.

Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations and n variables:

$$\begin{cases} a_{11}x_1 & + \dots + & a_{1n}x_n & = & b_1 \\ \vdots & & \vdots & & \vdots \\ a_{m1}x_1 & + \dots + & a_{mn}x_n & = & b_m \end{cases}$$

- ▶ a's and b's are integers.
- ▶ Matrix form: $a(x_{\downarrow}) = b_{\downarrow}$.

Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S_0 :

$$\begin{cases}
-b_1x_0 + a_{11}x_1 + \cdots + a_{1n}x_n = 0 \\
\vdots & \vdots & \vdots \\
-b_mx_0 + a_{m1}x_1 + \cdots + a_{mn}x_n = 0
\end{cases}$$

- ▶ Solve S_0 and keep only the solutions with $x_0 \le 1$.
- $x_0 = 1$: a minimal solution for $a(x_{\downarrow}) = b_{\downarrow}$.
- $x_0 = 0$: a minimal solution for $a(x_{\downarrow}) = 0_{\downarrow}$.
- ▶ Any solution of the non-homogeneous system $a(x_{\downarrow}) = b_{\downarrow}$ has the form $x_{\downarrow} + y_{\downarrow}$ where:
 - x_{\downarrow} is a minimal solution of $a(x_{\downarrow}) = b_{\downarrow}$.
 - ▶ y_{\downarrow} is a linear combination (with natural coefficients) of minimal solutions of $a(x_{\downarrow}) = 0_{\downarrow}$.

Back to ACU-Unification

Theorem

The decision problem for ACU-Matching and ACU-unification is NP-complete.