# Introduction to Unification Theory 

Equational Unification

Temur Kutsia

RISC, Johannes Kepler University Linz
kutsia@risc.jku.at

## Overview

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

## Outline

Motivation

## Equational Theories, Reformulations of Notions

## Unification Type, Kinds of Unification

## Results for Specific Theories

General Results

## Motivation

- Unifications algorithms are essential components for deduction systems.
- Simple integration of axioms that describe the properties of equality often leads to an unacceptable increase of search space.
- Proposed solution: To build equational axioms into inference, replacing syntactic unification with equational unification.


## Motivation

## Example

Given: AI-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$
f\left(x_{0}, f\left(x_{1}, \ldots, f\left(x_{n-1}, f\left(x_{n}, f\left(x_{0}, \ldots, f\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right) \ldots\right)\right) .
$$

## Motivation

## Example

Given: AI-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$
f\left(x_{0}, f\left(x_{1}, \ldots, f\left(x_{n-1}, f\left(x_{n}, f\left(x_{0}, \ldots, f\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right) \ldots\right)\right)
$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.


## Motivation

## Example

Given: AI-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$
f\left(x_{0}, f\left(x_{1}, \ldots, f\left(x_{n-1}, f\left(x_{n}, f\left(x_{0}, \ldots, f\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right) \ldots\right)\right)
$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.
- A human mathematician would use words instead of terms, i.e. would work modulo associativity, and apply idempotence $x x=x$ to the word $x_{0} \cdots x_{n} x_{0} \cdots x_{n}$ by unifying $x$ with $x_{0} \cdots x_{n}$.


## Motivation

## Example

Given: AI-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$
f\left(x_{0}, f\left(x_{1}, \ldots, f\left(x_{n-1}, f\left(x_{n}, f\left(x_{0}, \ldots, f\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right) \ldots\right)\right)
$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.
- A human mathematician would use words instead of terms, i.e. would work modulo associativity, and apply idempotence $x x=x$ to the word $x_{0} \cdots x_{n} x_{0} \cdots x_{n}$ by unifying $x$ with $x_{0} \cdots x_{n}$.
- To adopt this way of proceeding for a prover, we must replace the syntactic unification algorithm in the resolution step by associative unification.


## Outline

## Motivation

Equational Theories, Reformulations of Notions

## Unification Type, Kinds of Unification

## Results for Specific Theories

## General Results

## Equational Theory

## Equational Theory

- E: a set of equations over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, called identities.
- Equational theory $\dot{\doteq}_{E}$ defined by $E$ : The least congruence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ closed under substitution and containing $E$


## Equational Theory

## Equational Theory

- E: a set of equations over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, called identities.
- Equational theory $\dot{\doteq}_{E}$ defined by $E$ : The least congruence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ closed under substitution and containing $E$
i.e., $\dot{=}_{E}$ is the least binary relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ with the properties:
- $E \subseteq \dot{\bar{\epsilon}}_{E}$.
- Reflexivity: $s \dot{\overline{=}}_{E} s$ for all $s$.
- Symmetry: If $s \doteq_{E} t$ then $t \dot{\doteq}_{E} s$ for all $s, t$.
- Transitivity: If $s \doteq_{E} t$ and $t \doteq_{E} r$ then $s \doteq_{E} r$ for all $s, t, r$.
- Congruence: If $s_{1} \dot{\ni}_{E} t_{1}, \ldots, s_{n} \dot{\ni}_{E} t_{n}$ then $f\left(s_{1}, \ldots, s_{n}\right) \dot{\doteq}_{E} f\left(t_{1}, \ldots, t_{n}\right)$ for all $s, t, n$ and $n$-ary $f$.
- Closure under substitution: If $s \doteq_{E} t$ then $s \sigma \doteq_{E} t \sigma$ for all $s, t, \sigma$.


## Notation, Terminology

- Identities: $s \approx t$.
- $s \dot{\doteq}_{E} t$ : The term $s$ is equal modulo $E$ to the term $t$.
- $E$ will be called an equational theory as well (abuse of the terminology).
- $\operatorname{sig}(E)$ : The set of function symbols that occur in $E$.


## Example

- $C:=\{f(x, y) \approx f(y, x)\}: f$ is commutative. $\operatorname{sig}(C)=f$.
- $f(f(a, b), c) \doteq_{C} f(c, f(b, a))$.


## Notation, Terminology

- Identities: $s \approx t$.
- $s \dot{\doteq}_{E} t$ : The term $s$ is equal modulo $E$ to the term $t$.
- $E$ will be called an equational theory as well (abuse of the terminology).
- $\operatorname{sig}(E)$ : The set of function symbols that occur in $E$.


## Example

- $C:=\{f(x, y) \approx f(y, x)\}: f$ is commutative. $\operatorname{sig}(C)=f$.
- $f(f(a, b), c) \doteq_{C} f(c, f(b, a))$.
- $A U:=\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, e) \approx x, f(e, x) \approx x\}$ : $f$ is associative, $e$ is unit. $\operatorname{sig}(A U)=\{f, e\}$
- $f(a, f(x, f(e, a))) \doteq_{A U} f(f(a, x), a)$.


## Notation, Terminology

## E-Unification Problem, $E$-Unifier, $E$-Unifiability

- $E$ : equational theory.
$\mathcal{F}$ : set of function symbols.
$\mathcal{V}$ : countable set of variables.
- $E$-Unification problem over $\mathcal{F}$ : a finite set of equations

$$
\Gamma=\left\{s_{1} \doteq{ }_{E}^{?} t_{1}, \ldots, s_{n} \doteq ? \stackrel{?}{E} t_{n}\right\}
$$

where $s_{i}, t_{i} \in \mathcal{T}(\mathcal{F}, \mathcal{V})$.

- $E$-Unifier of $\Gamma$ : a substitution $\sigma$ such that

$$
s_{1} \sigma \doteq_{E} t_{1} \sigma, \ldots, s_{n} \sigma \doteq_{E} t_{n} \sigma
$$

- $u_{E}(\Gamma)$ : the set of $E$-unifiers of $\Gamma$. $\Gamma$ is $E$-unifiable iff $u_{E}(\Gamma) \neq \varnothing$.


## E-Unification vs Syntactic Unification

- Syntactic unification: a special case of $E$-unif. with $E=\varnothing$.
- Any syntactic unifier of an $E$-unification problem $\Gamma$ is also an $E$-unifier of $\Gamma$.
- For $E \neq \varnothing, u_{E}(\Gamma)$ may contain a unifier that is not a syntactic unifier.


## $E$-Unification vs Syntactic Unification

- Syntactic unification: a special case of $E$-unif. with $E=\varnothing$.
- Any syntactic unifier of an $E$-unification problem $\Gamma$ is also an $E$-unifier of $\Gamma$.
- For $E \neq \varnothing, u_{E}(\Gamma)$ may contain a unifier that is not a syntactic unifier.


## Example

- Terms $f(a, x)$ and $f(b, y)$ :
- Not syntactically unifiable.
- Unifiable module commutativity of $f$. $C$-unifier: $\{x \mapsto b, y \mapsto a\}$


## E-Unification vs Syntactic Unification

- Syntactic unification: a special case of $E$-unif. with $E=\varnothing$.
- Any syntactic unifier of an $E$-unification problem $\Gamma$ is also an $E$-unifier of $\Gamma$.
- For $E \neq \varnothing, u_{E}(\Gamma)$ may contain a unifier that is not a syntactic unifier.


## Example

- Terms $f(a, x)$ and $f(b, y)$ :
- Not syntactically unifiable.
- Unifiable module commutativity of $f$. $C$-unifier: $\{x \mapsto b, y \mapsto a\}$
- Terms $f(a, x)$ and $f(y, b)$ :
- Have the most general syntactic unifier $\{x \mapsto b, y \mapsto a\}$.
- If $f$ is associative, then $u_{A}\left(\left\{f(a, x) \doteq{ }_{A}^{?} f(y, b)\right\}\right)$ contains additional $A$-unifiers, e.g. $\{x \mapsto f(z, b), y \mapsto f(a, z)\}$.


## Notions Adapted

## Instantiation Quasi-Ordering (Modified)

- $E$ : equational theory. $\mathcal{X}$ : set of variables.
- A substitution $\sigma$ is more general modulo $E$ on $\mathcal{X}$ than $\vartheta$, written $\sigma \leq_{E}^{\mathcal{X}} \vartheta$, if there exists $\eta$ such that $x \sigma \eta \dot{ذ}_{E} x \vartheta$ for all $x \in \mathcal{X}$.
- $\vartheta$ is called an $E$-instance of $\sigma$ modulo $E$ on $\mathcal{X}$.
- The relation $\leq_{E}^{\mathcal{X}}$ is quasi-ordering, called instantiation quasi-ordering.
- $={ }_{E}^{\mathcal{X}}$ is the equivalence relation corresponding to $\leq_{E}^{\mathcal{X}}$.


## No Single MGU

- When comparing unifiers of $\Gamma$, the set $\mathcal{X}$ is $\operatorname{vars}(\Gamma)$.
- Unifiable $E$-unification problems might not have an mgu.


## Example

- $f$ is commutative.
- $\Gamma=\{f(x, y) \doteq \stackrel{?}{C} f(a, b)\}$ has two $C$-unifiers:

$$
\begin{aligned}
& \sigma_{1}=\{x \mapsto a, y \mapsto b\} \\
& \sigma_{2}=\{x \mapsto b, y \mapsto a\} .
\end{aligned}
$$

- On $\operatorname{vars}(\Gamma)=\{x, y\}$, any unifier is equal to either $\sigma_{1}$ or $\sigma_{2}$.
- $\sigma_{1}$ and $\sigma_{2}$ are not comparable wrt $\varsigma_{C}^{\{x, y\}}$.
- Hence, no mgu for $\Gamma$.


## MCSU vs MGU

In E-unification, the role of mgu is taken on by a complete set of $E$-unifiers.

## Complete and Minimal Complete Sets of $E$-Unifiers

- $\Gamma$ : E-unification problem over $\mathcal{F}$.
- $\mathcal{X}=\operatorname{vars}(\Gamma)$.
- $\mathcal{C}$ is a complete set of $E$-unifiers of $\Gamma$ iff

1. $\mathcal{C} \subseteq u_{E}(\Gamma)$ : $\mathcal{C}$ 's elements are $E$-unifiers of $\Gamma$, and
2. For each $\vartheta \in u_{E}(\Gamma)$ there exists $\sigma \in \mathcal{C}$ such that $\sigma \leq_{E}^{\mathcal{X}} \vartheta$.

- $\mathcal{C}$ is a minimal complete set of $E$-unifiers $\left(m c s u_{E}\right)$ of $\Gamma$ if it is a complete set of $E$-unifiers of $\Gamma$ and

3. two distinct elements of $\mathcal{C}$ are not comparable wrt $\leq_{E}^{\mathcal{X}}$.

- $\sigma$ is an mgu of $\Gamma$ iff $\operatorname{mcsu}_{E}(\Gamma)=\{\sigma\}$.


## MCSU's

- $\operatorname{mcsu}_{E}(\Gamma)=\varnothing$ if $\Gamma$ is not $E$-unifiable.
- Minimal complete sets of unifiers do not always exist.
- When they exist, they may be infinite.
- When they exist, they are unique up to $=\frac{\mathcal{X}}{E}$.


## Outline

## Motivation

## Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

## Results for Specific Theories

## General Results

## Unification Type

## Unification Type of a Problem, Theory.

- $E$ : equational theory.
- $\Gamma$ : E-unification problem over $\mathcal{F}$.
- $\Gamma$ has unification type
- unitary, if $m c s u(\Gamma)$ has cardinality at most one,
- finitary, if $m c s u(\Gamma)$ has finite cardinality,
- infinitary, if $m c s u(\Gamma)$ has infinite cardinality,
- zero, if $m c s u(\Gamma)$ does not exist.
- Abbreviation: type unitary - 1, finitary - $\omega$, infinitary - $\infty$, zero-0.
- Ordering: $1<\omega<\infty<0$.
- Unification type of $E$ wrt $\mathcal{F}$ : the maximal type of an $E$-unification problem over $\mathcal{F}$.


## Unification Type

The unification type of an $E$-equational problem over $\mathcal{F}$ depends both

- on $E$, and
- on $\mathcal{F}$.

Examples and more details will follow.

## Unification Type

## Example (Type Unitary)

Syntactic unification.

- The empty equational theory $\varnothing$ : Syntactic unification.
- Unitary wrt any $\mathcal{F}$ because any unifiable syntactic unification problem has an mgu.


## Unification Type

Example (Type Finitary)
Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :


## Unification Type

Example (Type Finitary)
Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :
- Let $\Gamma=\left\{s_{1} \doteq{ }_{C}^{?} t_{1}, \ldots, s_{n} \doteq{ }_{C}^{?} t_{n}\right\}$ be a $C$-unification problem.


## Unification Type

## Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :
- Let $\Gamma=\left\{s_{1} \doteq \stackrel{?}{C} t_{1}, \ldots, s_{n} \doteq ? \stackrel{?}{C} t_{n}\right\}$ be a $C$-unification problem.
- Consider all possible syntactic unification problems $\Gamma^{\prime}=\left\{s_{1}^{\prime} \doteq_{?}^{?} t_{1}^{\prime}, \ldots, s_{n}^{\prime} \doteq_{?}^{?} t_{n}^{\prime}\right\}$, where $s_{i}^{\prime} \dot{\ni}_{C} s_{i}$ and $t_{i}^{\prime} \dot{\Xi}_{C} t_{i}$ for each $1 \leq i \leq n$.


## Unification Type

## Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :
- Let $\Gamma=\left\{s_{1} \doteq \stackrel{?}{C} t_{1}, \ldots, s_{n} \doteq ? \stackrel{?}{C} t_{n}\right\}$ be a $C$-unification problem.
- Consider all possible syntactic unification problems $\Gamma^{\prime}=\left\{s_{1}^{\prime} \doteq_{?}^{?} t_{1}^{\prime}, \ldots, s_{n}^{\prime} \doteq_{?}^{?} t_{n}^{\prime}\right\}$, where $s_{i}^{\prime} \dot{\ni}_{C} s_{i}$ and $t_{i}^{\prime} \dot{\Xi}_{C} t_{i}$ for each $1 \leq i \leq n$.
- There are only finitely many such $\Gamma^{\prime} s$, because the $C$-equivalence class for a given term $t$ is finite.


## Unification Type

## Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :
- Let $\Gamma=\left\{s_{1} \doteq \stackrel{?}{C} t_{1}, \ldots, s_{n} \doteq ? \stackrel{?}{C} t_{n}\right\}$ be a $C$-unification problem.
- Consider all possible syntactic unification problems $\Gamma^{\prime}=\left\{s_{1}^{\prime} \doteq_{?}^{?} t_{1}^{\prime}, \ldots, s_{n}^{\prime} \doteq_{?}^{?} t_{n}^{\prime}\right\}$, where $s_{i}^{\prime} \dot{\ni}_{C} s_{i}$ and $t_{i}^{\prime} \dot{\Xi}_{C} t_{i}$ for each $1 \leq i \leq n$.
- There are only finitely many such $\Gamma^{\prime}$ s, because the $C$-equivalence class for a given term $t$ is finite.
- It can be shown that collection of all mgu's of $\Gamma^{\prime} \mathrm{s}$ is a complete set of $C$-unifiers of $\Gamma$. This set if finite.


## Unification Type

## Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- $\left\{f(x, y) \doteq{ }_{C}^{?} f(a, b)\right\}$ does not have an mgu. $C$-unification is not unitary.
- Show that it is finitary for any $\mathcal{F}$ :
- Let $\Gamma=\left\{s_{1} \doteq \stackrel{?}{C} t_{1}, \ldots, s_{n} \doteq ? \stackrel{?}{C} t_{n}\right\}$ be a $C$-unification problem.
- Consider all possible syntactic unification problems $\Gamma^{\prime}=\left\{s_{1}^{\prime} \doteq_{?}^{?} t_{1}^{\prime}, \ldots, s_{n}^{\prime} \doteq_{?}^{?} t_{n}^{\prime}\right\}$, where $s_{i}^{\prime} \dot{\ni}_{C} s_{i}$ and $t_{i}^{\prime} \dot{\Xi}_{C} t_{i}$ for each $1 \leq i \leq n$.
- There are only finitely many such $\Gamma^{\prime}$ s, because the $C$-equivalence class for a given term $t$ is finite.
- It can be shown that collection of all mgu's of $\Gamma^{\prime} \mathrm{s}$ is a complete set of $C$-unifiers of $\Gamma$. This set if finite.
- If this set is not minimal (often the case), it can be minimized by removing redundant $C$-unifiers.


## Unification Type

Example (Type Infinitary)
Associative unification: $\{f(f(x, y), z) \approx f(x, f(y, z))\}$.

- $\left\{f(x, a) \doteq \begin{array}{l}? \\ A\end{array} f(a, x)\right\}$ has an infinite mcsu: $\{\{x \mapsto a\},\{x \mapsto f(a, a)\},\{x \mapsto f(a, f(a, a))\}, \ldots\}$
- Hence, $A$-unification can not be unitary or finitary.
- It is not of type zero because any $A$-unification problem has an $m c s u$ that can be enumerated by the procedure from
圊 G. Plotkin.
Building in equational theories.
In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages 73-90. Edinburgh University Press, 1972.
- A-unification is infinitary for any $\mathcal{F}$.


## Unification Type

Example (Type Zero)
Associative-Idempotent unification:
$\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$.

- $\left\{f(x, f(y, x)) \doteq{ }_{A}{ }_{A} f(x, f(z, x))\right\}$ does not have a minimal complete set of unifiers, see
國 F. Baader.
Unification in idempotent semigroups is of type zero. J. Automated Reasoning, 2(3):283-286, 1986.
- AI-unification is of type zero.


## Unification Type. Signature Matters

Associative-commutative unification with unit:

$$
A C U=\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, y) \approx f(y, x), f(x, e) \approx x\} .
$$

- Any $A C U$ problem built using only $f$ and variables has an mgu (i.e. is unitary).
- There are $A C U$ problems that contain function symbols other than $f$ and $e$, which are finitary, not unitary. For instance, $\operatorname{mcsu}\left(\left\{f(x, y) \doteq_{A C U}^{?} f(a, b)\right\}\right)$ consists of four unifiers (which ones?).
Kinds of $E$-unification.


## Kinds of $E$-Unification

One may distinguish three kinds of $E$-unification problems, depending on the function symbols that are allowed to occur in them.

E-Unification Problems: Elementary, with Constants, General.

- $E$ : an equational Theory.
$\Gamma$ : an $E$-unification problem over $\mathcal{F}$.
- $\Gamma$ is an elementary $E$-unification problem iff $\mathcal{F}=\operatorname{sig}(E)$.
- $\Gamma$ is an $E$-unification problem with constants iff $\mathcal{F} \backslash \operatorname{sig}(E)$ consists of constants.
- $\Gamma$ is a general $E$-unification problem iff $\mathcal{F} \backslash \operatorname{sig}(E)$ may contain arbitrary function symbols.


## Unification Types of Theories wrt Kinds

- Unification type of $E$ wrt elementary unification: Maximal unification type of $E$ wrt all $\mathcal{F}$ such that $\mathcal{F}=\operatorname{sig}(E)$.
- Unification type of $E$ wrt unification with constants: Maximal unification type of $E$ wrt all $\mathcal{F}$ such that $\mathcal{F} \backslash \operatorname{sig}(E)$ is a set of constants.
- Unification type of $E$ wrt general unification: Maximal unification type of $E$ wrt all $\mathcal{F}$ such that $\mathcal{F} \backslash \operatorname{sig}(E)$ is a set of arbitrary function symbols.


## Unification Types of Theories wrt Kinds

The same equational theory can have different unification types for different kinds. Examples:

- ACU (Abelian monoids): Unitary wrt elementary unification, finitary wrt unification with constants and general unification.
- $A G$ (Abelian groups): Unitary wrt elementary unification and unification with constants, finitary wrt general unification.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.
- $E$ is decidable if it admits a decision procedure.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.
- $E$ is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt $\mathcal{F}$ ): An algorithm that computes a (minimal) finite complete set of $E$-unifiers for all $E$-unification problems over $\mathcal{F}$.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.
- $E$ is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt $\mathcal{F}$ ): An algorithm that computes a (minimal) finite complete set of $E$-unifiers for all $E$-unification problems over $\mathcal{F}$.
- $E$-unification algorithm yields a decision procedure for $E$.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.
- $E$ is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt $\mathcal{F}$ ): An algorithm that computes a (minimal) finite complete set of $E$-unifiers for all $E$-unification problems over $\mathcal{F}$.
- $E$-unification algorithm yields a decision procedure for $E$.
- (Minimal) E-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of E-unifiers.


## Decision and Unification Procedures

- Decision procedure for an equational theory $E$ (wrt $\mathcal{F}$ ): An algorithm that for each $E$-unification problem $\Gamma$ (wrt $\mathcal{F}$ ) returns success if $\Gamma$ is $E$-unifiable, and failure otherwise.
- $E$ is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt $\mathcal{F}$ ): An algorithm that computes a (minimal) finite complete set of $E$-unifiers for all $E$-unification problems over $\mathcal{F}$.
- $E$-unification algorithm yields a decision procedure for $E$.
- (Minimal) E-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of E-unifiers.
- E-unification procedure does not yield a decision procedure for $E$.


## Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of $E$-unification.

- There exists an equational theory for which elementary unification is decidable, but unification with constants is undecidable:
國 H.-J. Bürckert.
Some relationships between unification, restricted unification, and matching.
In J. Siekmann, editor, Proc. 8th Int. Conference on
Automated Deduction, volume 230 of LNCS. Springer, 1986.


## Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of $E$-unification.

- There exists an equational theory for which unification with constants is decidable, but general unification is undecidable:
周 J. Otop.
E-unification with constants vs. general E-unification. Journal of Automated Reasoning, 48(3):363-390, 2012.


## Single Equation vs Systems of Equations

- In syntactic unification, solving systems of equations can be reduced to solving a single equation.
- For equational unification, the same holds only for general unification.
- For elementary unification and for unification with constants it is not the case.


## Single Equation vs Systems of Equations

There exists an equational theory $E$ such that

- all elementary $E$-unification problems of cardinality 1 (single equations) have minimal complete sets of E-unifiers, but
- $E$ is of type zero wrt to elementary unification: There exists an elementary $E$-unification problem of cardinality $>1$ that does not have a minimal complete set of unifiers.
H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß.

On equational theories, unification, and decidability. J. Symbolic Computation 8(3,4), 3-49. 1989.

## Single Equation vs Systems of Equations

There exists an equational theory $E$ such that

- unifiability of elementary $E$-unification problems of cardinality 1 (single equations) is decidable, but
- for elementary problems of larger cardinality it is undecidable.

围 P. Narendran and H. Otto.
Some results on equational unification.
In M. E. Stickel, editor, Proc. 10th Int. Conference on
Automated Deduction, volume 449 of LNAI. Springer, 1990.

## Three Main Questions in Unification Theory

For a given $E$, unification theory is mainly concerned with finding answers to the following three questions:
Decidability: Is it decidable whether an $E$-unification problem is solvable? If yes, what is the complexity of this decision problem?
Unification type: What is the unification type of the theory $E$ ?
Unification algorithm: How can we obtain an (efficient)
$E$-unification algorithm, or a (preferably minimal)
E-unification procedure?

## Three Main Questions in Unification Theory

- Unification type depends on
- equational theory,
- signature (kinds),
- cardinality of unification problems.


## Three Main Questions in Unification Theory

- Unification type depends on
- equational theory,
- signature (kinds),
- cardinality of unification problems.
- Decidability depends on
- equational theory,
- signature (kinds),
- cardinality of unification problems.


## Outline

## Motivation

## Equational Theories, Reformulations of Notions

## Unification Type, Kinds of Unification

Results for Specific Theories

General Results

## Summary of Results for Specific Theories

General unification:

| Theory | Decidability | Type | Algorithm/Procedure |
| :--- | :---: | :---: | :---: |
| $\varnothing$, BR | Yes | 1 | Yes |
| A, AU | Yes | $\infty$ | Yes |
| C, AC, ACU | Yes | $\omega$ | Yes |
| I, CI, ACI | Yes | $\omega$ | Yes |
| AI | Yes | 0 | $?$ |
| $D_{\{f, g\}} \mathrm{A}_{g}$ | No | $\infty$ | $?$ |
| AG | Yes | $\omega$ | Yes |
| CRU | No | $?(\infty$ or 0$)$ | $?$ |

BR - Boolean ring, D - distributivity, CRU - commutative ring with unit.

## Commutative Unification and Matching

- C-unification inference system $\mathcal{U}_{\mathrm{C}}$ can be obtained from the $\mathcal{U}$ by adding the C -Decomposition rule:

C-Decomposition: $\left\{f\left(s_{1}, s_{2}\right) \doteq \stackrel{?}{\mathrm{C}} f\left(t_{1}, t_{2}\right)\right\} \uplus P^{\prime} ; S \Longrightarrow$

$$
\left\{s_{1} \doteq \stackrel{?}{\mathrm{C}} t_{2}, s_{2} \doteq \stackrel{?}{\mathrm{C}} t_{1}\right\} \cup P^{\prime} ; S,
$$

if $f$ is commutative.

- C-Decomposition and Decomposition transform the same system in different ways.


## Commutative Unification and Matching

- C-unification inference system $\mathcal{U}_{\mathrm{C}}$ can be obtained from the $\mathcal{U}$ by adding the C -Decomposition rule:

C-Decomposition: $\left\{f\left(s_{1}, s_{2}\right) \doteq \stackrel{?}{\mathrm{C}} f\left(t_{1}, t_{2}\right)\right\} \uplus P^{\prime} ; S \Longrightarrow$

$$
\left\{s_{1} \doteq \stackrel{?}{\mathrm{C}} t_{2}, s_{2} \doteq \stackrel{?}{\mathrm{C}} t_{1}\right\} \cup P^{\prime} ; S,
$$

if $f$ is commutative.

- C-Decomposition and Decomposition transform the same system in different ways.
- C-matching algorithm $\mathcal{M}_{\mathrm{C}}$ is obtained analogously from M.


## C-Unification

In order to C-unify $s$ and $t$ :

1. Create an initial system $\{s \doteq \stackrel{?}{\mathrm{C}} t\} ; \varnothing$.
2. Apply successively rules from $\mathcal{U}_{\mathrm{C}}$, building a complete tree of derivations. C-Decomposition and Decomposition rules have to be applied concurrently and form branching points in the derivation tree.

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\{g(f(x, y), z) \doteq \xlongequal[\mathrm{C}]{ } g(f(f(a, b), f(b, a))), c)\} ; \varnothing
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{gathered}
\{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
\downarrow \\
\{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq ? \stackrel{?}{\mathrm{C}} c\} ; \varnothing
\end{gathered}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \xlongequal[\mathrm{C}]{?} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\left\{x \doteq \frac{\mathrm{C}}{\mathrm{C}} f(b, a), y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\right\} ; \varnothing
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\{x \doteq \stackrel{\text { ? }}{\mathrm{C}} f(b, a), y \doteq \stackrel{\stackrel{\mathrm{C}}{\mathrm{C}}}{ } f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{y \doteq \stackrel{?}{\mathrm{c}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ;\{x \doteq f(a, b)\}
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\{x \doteq \stackrel{?}{\mathrm{c}} f(b, a), y \doteq \stackrel{\ominus}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ;\{x \doteq f(a, b)\} \\
& \{z \doteq ?
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\{x \doteq \stackrel{?}{\mathrm{c}} f(b, a), y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ;\{x \doteq f(a, b)\} \\
& \downarrow \\
& \{z \doteq ? \\
& \varnothing ;\{x \doteq f(a, b), y \doteq f(b, a), z \doteq c\}
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\{x \doteq \stackrel{?}{\mathrm{c}} f(b, a), y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{y \doteq ? f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ;\{x \doteq f(a, b)\} \quad\{y \doteq ? \\
& \{z \doteq ? \\
& \varnothing ;\{x \doteq f(a, b), y \doteq f(b, a), z \doteq c\}
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\{x \doteq \stackrel{?}{\mathrm{c}} f(b, a), y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{y \doteq \stackrel{?}{\mathrm{c}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ;\{x \doteq f(a, b)\} \\
& \{z \doteq ? \\
& \{z \doteq ? \\
& \varnothing ;\{x \doteq f(a, b), y \doteq f(b, a), z \doteq c\}
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.

$$
\begin{aligned}
& \{g(f(x, y), z) \doteq \stackrel{?}{\mathrm{C}} g(f(f(a, b), f(b, a))), c)\} ; \varnothing \\
& \{f(x, y) \doteq \stackrel{?}{\mathrm{C}} f(f(a, b), f(b, a)), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \\
& \{x \doteq \stackrel{?}{\mathrm{C}} f(a, b), y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{C}} c\} ; \varnothing \quad\left\{x \doteq \frac{\mathrm{C}}{\mathrm{C}} f(b, a), y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \doteq \stackrel{?}{\mathrm{C}} c\right\} ; \varnothing \\
& \{y \doteq \stackrel{?}{\mathrm{C}} f(b, a), z \doteq \stackrel{?}{\mathrm{c}} c\} ;\{x \doteq f(a, b)\} \\
& \{z \doteq ? \\
& \varnothing ;\{x \doteq f(a, b), y \doteq f(b, a), z \doteq c\} \\
& \{y \doteq \stackrel{?}{\mathrm{C}} f(a, b), z \underset{\mathrm{C}}{\stackrel{?}{\mathrm{C}}} c\} ;\{x \doteq f(b, a)\} \\
& \{z \doteq ? \\
& \varnothing ;\{x \doteq f(b, a), y \doteq f(a, b), z \doteq c\}
\end{aligned}
$$

## Example. C-Unification

C-unify $g(f(x, y), z)$ and $g(f(f(a, b), f(b, a)), c)$, commutative $f$.


Not minimal.

## Properties of the C-Unification Algorithm

Theorem
Applied to a C-unification problem $P$, the C -unification algorithm terminates and computes a complete set of C -unifiers of $P$.

## Properties of the C-Unification Algorithm

## Theorem

Applied to a C-unification problem $P$, the C -unification algorithm terminates and computes a complete set of C -unifiers of $P$.

Proof.

- Termination is proved using the same measure as for syntactic unification.
- Completeness is based on the following two facts:
- If $\Gamma$ is transformed by only one rule of $\mathcal{U}_{\mathrm{C}}$ into $\Gamma^{\prime}$, then $u_{\mathrm{C}}(\Gamma)=u_{\mathrm{C}}\left(\Gamma^{\prime}\right)$.
- If $\Gamma$ is transformed by two rules of $\mathcal{U}_{\mathrm{C}}$ into $\Gamma_{1}$ and $\Gamma_{2}$, then $u_{\mathrm{C}}(\Gamma)=u_{\mathrm{C}}\left(\Gamma_{1}\right) \cup u_{\mathrm{C}}\left(\Gamma_{2}\right)$.


## MCSU for C-Unification/Matching Problems Can Be Large

## Example

- Problem: $f\left(f\left(x_{1}, x_{2}\right), f\left(x_{3}, x_{4}\right)\right)=?$
- mcsu contains 4! substitutions.


## Properties of the C-Unification Algorithm

- The algorithm, in general, does not return a minimal complete set of C-unifiers.
- The obtained complete set can be further minimized, removing redundant unifiers.
- Not clear how to design a C-unification algorithm that computes a minimal complete set of unifiers directly.


## Properties of the C-Unification Algorithm

Theorem
The decision problem of C-matching and unification is NP-complete.

Proof.
Exercise.

## ACU-Unification

$$
\mathrm{ACU}=\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, y) \approx f(y, x), f(x, e) \approx x\}
$$

1. Associativity, commutativity, unit element.
2. $f$ is associative and commutative, $e$ is the unit element.

## Example: Elementary ACU-Unification

Elementary ACU-unification problem:

$$
\Gamma=\{f(x, f(x, y)) \doteq ? \stackrel{\text { ACU }}{ } f(z, f(z, z))\}
$$

Solving idea:

1. Associate with the equation in $\Gamma$ a homogeneous linear Diophantine equation $2 x+y=3 z$.
2. The equation states that the number of new variables introduced by a unifier $\sigma$ in both sides of $\Gamma \sigma$ must be the same.
(Continues on the next slide.)

## Example. Elementary ACU-Unification (Cont.)

3. Solve $2 x+y=3 z$ over nonnegative integers. Three minimal solutions:

$$
\begin{aligned}
& x=1, y=1, z=1 \\
& x=0, y=3, z=1 \\
& x=3, y=0, z=2
\end{aligned}
$$

Any other solution of the equation can be obtained as a nonnegative linear combination of these three solutions.
(Continues on the next slide.)

## Example. Elementary ACU-Unification (Cont.)

4. Introduce new variables $v_{1}, v_{2}, v_{3}$ for each solution of the Diophantine equation:

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $v_{1}$ | 1 | 1 | 1 |
| $v_{2}$ | 0 | 3 | 1 |
| $v_{3}$ | 3 | 0 | 2 |

5. Each row corresponds to a unifier of $\Gamma$ :

$$
\begin{aligned}
\sigma_{1} & =\left\{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\right\} \\
\sigma_{2} & =\left\{x \mapsto e, y \mapsto f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right), z \mapsto v_{2}\right\} \\
\sigma_{3} & =\left\{x \mapsto f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right), y \mapsto e, z \mapsto f\left(v_{3}, v_{3}\right)\right\}
\end{aligned}
$$

However, none of them is an mgu.

## Example. Elementary ACU-Unification (Cont.)

6. To obtain an mgu, we should combine all three solutions:

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $v_{1}$ | 1 | 1 | 1 |
| $v_{2}$ | 0 | 3 | 1 |
| $v_{3}$ | 3 | 0 | 2 |

The columns indicate that the mgu we are looking for should have

- in the binding for $x$ one $v_{1}$, zero $v_{2}$, and three $v_{3}$ 's,
- in the binding for $y$ one $v_{1}$, three $v_{2}$ 's, and zero $v_{3}$,
- in the binding for $z$ one $v_{1}$, one $v_{2}$, and two $v_{3}$ 's

7. Hence, we can construct an mgu:

$$
\begin{aligned}
\sigma=\{ & x \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), y \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right), \\
& \left.z \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\}
\end{aligned}
$$

## Example: ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\{f(x, f(x, y)) \doteq \overbrace{\mathrm{ACU}} f(a, f(z, f(z, z)))\}
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\} .
$$

- The minimal nontrivial natural solutions of $S$ are $(0,1,0)$ and $(2,0,1)$.


## Example: ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\{f(x, f(x, y)) \doteq ?
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\} .
$$

- Every natural solution of $S$ is obtained as the sum of one of its minimal solutions and a solution of the corresponding homogeneous LDE $2 x+y=3 z$.
- One element of the minimal complete set of unifiers of $\Gamma$ is obtained from the combination of one minimal solution of $S$ with the set of all minimal solutions of $2 x+y=3 z$.


## Example: ACU-Unification with constants

- ACU-unification problem with constants

$$
\Gamma=\left\{f(x, f(x, y)) \doteq{ }_{\mathrm{ACU}}^{?} f(a, f(z, f(z, z)))\right\}
$$

reduces to inhomogeneous linear Diophantine equation

$$
S=\{2 x+y=3 z+1\} .
$$

- The minimal complete set of unifiers of $\Gamma$ is $\left\{\sigma_{1}, \sigma_{2}\right\}$, where

$$
\begin{aligned}
\sigma_{1}=\{x & \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), \\
y & \mapsto f\left(a, f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right),\right. \\
z & \left.\mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\} \\
\sigma_{2}=\{x & \mapsto f\left(a, f\left(a, f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right)\right)\right), \\
y & \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right),\right. \\
z & \left.\mapsto f\left(a, f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right)\right\}
\end{aligned}
$$

## ACU-Unification with constants

- If an ACU-unification problem contains more than one constant, solve the corresponding inhomogeneous LDE for each constant.
- The unifiers in the minimal complete set correspond to all possible combinations of the minimal solutions of these inhomogeneous equations.


## ACU-Unification with constants

## Example

$x x y \doteq$ © ${ }_{\text {ACU }}$ aabbb:

- Equation for $a: 2 x+y=2$. Minimal solutions: $(1,0)$ and (0,2).
- Corresponding unifiers: $\{x \mapsto a, y \mapsto e\},\{x \mapsto e, y \mapsto a a\}$
- Equation for $b: 2 x+y=3$. Minimal solutions: $(0,3)$ and (1,1).
- Corresponding unifiers: $\{x \mapsto e, y \mapsto b b b\},\{x \mapsto b, y \mapsto b\}$
- Unifiers in the minimal complete set: $\{x \mapsto a, y \mapsto b b b\}$, $\{x \mapsto a b, y \mapsto b\},\{x \mapsto e, y \mapsto a a b b b\},\{x \mapsto b, y \mapsto a a b\}$.


## From ACU to AC

## Example

- How to solve $\Gamma_{1}=\{f(x, f(x, y)) \doteq$ ? $\hat{\mathrm{AC}} \mathrm{f}(z, f(z, z))\}$ ?
- We "know" how to solve $\Gamma_{2}=\{f(x, f(x, y)) \doteq ? \stackrel{\text { ACU }}{ } f(z, f(z, z))\}$, but its mgu is not an mgu for $\Gamma_{1}$.
- Mgu of $\Gamma_{2}$ :

$$
\begin{aligned}
\sigma=\{ & x \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), y \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right), \\
& \left.z \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\}
\end{aligned}
$$

- Unifier of $\Gamma_{1}: \vartheta=\left\{x \mapsto v_{1}, y \mapsto v 1, z \mapsto v_{1}\right\}$.
- $\sigma$ is not more general modulo AC than $\vartheta$.


## From ACU to AC

## Example

- Idea: Take the mgu of $\Gamma_{2}$.
- Compose it with all possible erasing substitutions that map a subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$ to the unit element.
- Restriction: The result of the composition should not map $x, y$, and $z$ to the unit element.


## From ACU to AC

## Example

Minimal complete set of unifiers for $\Gamma_{1}$ :

$$
\begin{aligned}
\sigma_{1}= & \left\{x \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), y \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right),\right. \\
& \left.z \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right)\right\} \\
\sigma_{2}= & \left\{x \mapsto f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right), y \mapsto f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right),\right. \\
& \left.z \mapsto f\left(v_{2}, f\left(v_{3}, v_{3}\right)\right)\right\} \\
\sigma_{3}= & \left\{x \mapsto f\left(v_{1}, f\left(v_{3}, f\left(v_{3}, v_{3}\right)\right)\right), y \mapsto v_{1}, z \mapsto f\left(v_{1}, f\left(v_{3}, v_{3}\right)\right)\right\} \\
\sigma_{4}= & \left\{x \mapsto v_{1}, y \mapsto f\left(v_{1}, f\left(v_{2}, f\left(v_{2}, v_{2}\right)\right)\right), z \mapsto f\left(v_{1}, v_{2}\right)\right\} \\
\sigma_{5}= & \left\{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\right\}
\end{aligned}
$$

## How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:
E-i Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).

## How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:
Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).
Generalizes Fortenbacher's Algorithm for solving a single equation:
圊 Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).

## How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:
Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).
Generalizes Fortenbacher's Algorithm for solving a single equation:
( Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).

Will be discussed in the next lecture.

## Example. E-Unification of Type 0

## Example

- Equational theory: $E=\{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}$.
- $E$-unification problem: $\Gamma=\{g(x) \doteq ?$


## Example. E-Unification of Type 0

## Example

- Equational theory: $E=\{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}$.
- E-unification problem: $\Gamma=\left\{g(x) \doteq{ }_{E}^{?} g(e)\right\}$.
- Complete (why?) set of solutions:

$$
\begin{aligned}
\sigma_{0} & =\{x \mapsto e\} \\
\sigma_{1} & =\left\{x \mapsto f\left(x_{0}, e\right)\right\} \\
\sigma_{2} & =\left\{x \mapsto f\left(x_{1}, f\left(x_{0}, e\right)\right)\right\}
\end{aligned}
$$

$$
\sigma_{n}=\left\{x \mapsto f\left(x_{n-1}, x \sigma_{n-1}\right)\right\}
$$

## Example. E-Unification of Type 0

## Example

- Equational theory: $E=\{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}$.
- E-unification problem: $\Gamma=\left\{g(x) \doteq{ }_{E}^{?} g(e)\right\}$.
- Complete (why?) set of solutions:

$$
\begin{aligned}
\sigma_{0} & =\{x \mapsto e\} \\
\sigma_{1} & =\left\{x \mapsto f\left(x_{0}, e\right)\right\} \\
\sigma_{2} & =\left\{x \mapsto f\left(x_{1}, f\left(x_{0}, e\right)\right)\right\}
\end{aligned}
$$

. . .

$$
\sigma_{n}=\left\{x \mapsto f\left(x_{n-1}, x \sigma_{n-1}\right)\right\}
$$

. . .

- No mcsu. $\sigma_{i}=\frac{\{x\}}{E} \sigma_{i+1}\left\{x_{i} \mapsto e\right\} . \sigma_{i} \notin E_{\{x\}}^{\sigma_{j}}$ for $i>j$. Infinite descending chain: $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \ldots$


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \ldots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \cdots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.
- Let $S^{\prime}$ be an arbitrary complete set of unifiers of $\Gamma$.


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \cdots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.
- Let $S^{\prime}$ be an arbitrary complete set of unifiers of $\Gamma$.
- Since $S$ is complete, for any $\vartheta \in S^{\prime}$ there exists $\sigma_{i} \in S$ such that $\sigma_{i} \leq_{E}^{\{x\}} \vartheta$.


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \ldots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.
- Let $S^{\prime}$ be an arbitrary complete set of unifiers of $\Gamma$.
- Since $S$ is complete, for any $\vartheta \in S^{\prime}$ there exists $\sigma_{i} \in S$ such that $\sigma_{i} \leq_{E}^{\{x\}} \vartheta$.
- Since $\sigma_{i+1} \widetilde{E}_{E}^{\{x\}} \sigma_{i}$, we get $\sigma_{i+1} \widetilde{E}_{E}^{\{x\}} \vartheta$.


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \ldots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.
- Let $S^{\prime}$ be an arbitrary complete set of unifiers of $\Gamma$.
- Since $S$ is complete, for any $\vartheta \in S^{\prime}$ there exists $\sigma_{i} \in S$ such that $\sigma_{i} \breve{S}_{E}^{\{x\}} \vartheta$.
- Since $\sigma_{i+1} \lessdot_{E}^{\{x\}} \sigma_{i}$, we get $\sigma_{i+1} \lessdot_{E}^{\{x\}} \vartheta$.
- On the other hand, since $S^{\prime}$ is complete, there exists $\eta \in S^{\prime}$ such that $\eta \leq_{E}^{\{x\}} \sigma_{i+1}$.


## Example. E-Unification of Type 0

## Example (Cont.)

Why does $\left.\left.\left.\sigma_{0}\right\rangle_{E}^{\{x\}} \sigma_{1}\right\rangle_{E}^{\{x\}} \sigma_{2}\right\rangle_{E}^{\{x\}} \ldots$ imply that there is no mcsu?

- Let $S=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$.
- Let $S^{\prime}$ be an arbitrary complete set of unifiers of $\Gamma$.
- Since $S$ is complete, for any $\vartheta \in S^{\prime}$ there exists $\sigma_{i} \in S$ such that $\sigma_{i} \leftrightarrows_{E}^{\{x\}} \vartheta$.
- Since $\sigma_{i+1} \lessdot_{E}^{\{x\}} \sigma_{i}$, we get $\sigma_{i+1} \lessdot_{E}^{\{x\}} \vartheta$.
- On the other hand, since $S^{\prime}$ is complete, there exists $\eta \in S^{\prime}$ such that $\eta \varsigma_{E}^{\{x\}} \sigma_{i+1}$.
- Hence, $\eta \lessdot_{E}^{\{x\}} \vartheta$ which implies that $S^{\prime}$ is not minimal.


## Specific vs General Results

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

## Outline

## Motivation

## Equational Theories，Reformulations of Notions

## Unification Type，Kinds of Unification

## Results for Specific Theories

General Results

## Specific vs General Results

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

## General Results

In general, unification modulo equational theories

- is undecidable,
- unification type of a given theory is undecidable,
- admits a complete unification procedure (Gallier \& Snyder, called an universal $E$-unification procedure).


## General Results

Universal $E$-unification procedure $\mathcal{U}_{E}$.
Rules:

- Trivial, Orient, Decomposition, Variable Elimination from $\mathcal{U}$, plus
- Lazy Paramodulation:

$$
\{e[u]\} \cup P^{\prime} ; S \Longrightarrow\{l \doteq ? u, e[r]\} \cup P^{\prime} ; S,
$$

for a fresh variant of the identity $l \approx r$ from $E \cup E^{-1}$, where

- $e[u]$ is an equation where the term $u$ occurs,
- $u$ is not a variable,
- if $l$ is not a variable, then the top symbol of $l$ and $u$ are the same.


## General Results

Universal $E$-unification procedure. Control.
In order to solve a unification problem $\Gamma$ modulo a given $E$ :

- Create an initial system $\Gamma ; \varnothing$.
- Apply successively rules from $\mathcal{U}_{E}$, building a complete tree of derivations.
- No other inference rule may be applied to the equation $l \doteq ? u$ that is generated by the Lazy Paramodulation rule before it is subjected to a Decomposition step.


## General Results

Universal $E$-unification procedure.
Example
$E=\{f(a, b) \approx a, a \approx b\}$.
Unification problem: $\left\{f(x, x) \doteq{ }_{E}^{?} x\right\}$.
Computing a unifier $\{x \mapsto a\}$ by the universal procedure:

$$
\begin{aligned}
& \left\{f(x, x) \dot{\doteqdot}_{E}^{?} x\right\} ; \varnothing \Longrightarrow_{L P}\left\{f(a, b) \dot{\bar{~}}_{E}^{?} f(x, x), a \dot{=}{ }_{E}^{?} x\right\} ; \varnothing \\
& \Longrightarrow_{D}\{a \doteq \stackrel{?}{E} x, b \doteq \stackrel{?}{E} x, a \doteq \stackrel{?}{E} x\} ; \varnothing \\
& \Longrightarrow O\{x \doteq \stackrel{?}{E} a, b \doteq \stackrel{?}{E} x, a \doteq \stackrel{?}{E} x\} ; \varnothing \\
& \Longrightarrow_{S}\{b \doteq \stackrel{?}{E} a, a \doteq \stackrel{?}{E} a\} ;\{x \doteq a\} \\
& \Longrightarrow_{L P}\left\{a \doteq{ }_{E}^{?} a, b \doteq_{E}^{?} b, a \doteq{ }_{E}^{?} a\right\} ;\{x \doteq a\} \\
& \Longrightarrow{ }_{T}^{+} \varnothing ;\{x \doteq a\}
\end{aligned}
$$

## General Results

Pros and cons of the universal procedure:

- Pros: Is sound and complete. Can be used for any $E$.
- Cons: Very inefficient. Usually does not yield a decision procedure or a (minimal) $E$-unification algorithm even for unitary or finitary theories with decidable unification.


## General Results

More useful results can be obtained by imposing additional restrictions on equational theories:

- Syntactic approaches: Restricting syntactic form of the identities defining equational theories.
- Semantic approaches: Depend on properties of the free algebras defined by the equational theory.

