
ROBOT KINEMATICS

SEBASTIAN FALKENSTEINER

Abstract. One of the first applications of Groebner bases was
in kinematics. To be more specific, the question was how many
configurations of the actuators of a Stewart platform can be found
such that the platform is in a particular position.

In this small excerpt we want to raise natural questions from
robot kinematics which can be partly answered by using Groeb-
ner bases. We will distinguish between the so called forward and
inverse kinematics.

1. Introduction

To treat the space of configurations of a robot geometrically , we
make some assumptions for simplification. We consider robots con-
structed from rigid links connected by joints. The links or segments
are connected in series, where one end is in fixed position and the other
end is the hand of the robot, and all segments lie on a plane. Since the
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2 ROBOT KINEMATICS

segments are rigid, motions can only be performed by the joints. Here
we distinguish between revolute joints, performing rotation around the
joint, and prismatic joints, performing translation along an axis.

Figure 1. revolute joint (left) and prismatic joint (right).

For simplicity, we number segments and joints of a robot in increasing
order out from the fixed end to the hand.

The position of a revolute joint between segments i and i+ 1 can be
described by the angle (we do that counterclockwise). Similarly, the
position of a prismatic joint can be specified by the extension. If the
joint positions can be set independent, then the possible settings of the
robot can be described by

J = S1 × · · · × Sn × I1 × · · · × Ip,

where the Sj are subsets of [0, 2π] describing the revolute joints and
Ij are some real intervals describing the prismatic joints. We call J
the joint space of the robot. Moreover, the hand is described by the
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position and an angle specifying the orientation, so the configuration
space of the robot’s hand is

C = U × V ⊂ R2 × [0, 2π].

Each element in the joint space uniquely determines the hand of the
robot and we define this mapping, also movement function called, as

f : J → C.
The two basic problems we are dealing with are the following:

• Forward Kinematic Problem: Can we explicitly give the move-
ment function f and find all possible hand configurations, namely
f(J )?
• Inverse Kinematic Problem: Given a hand configuration c ∈ C,

can we determine one or all joint settings to realize c? In other
words, can we find f−1({c})?

In order to handle the inverse kinematic problem we try to solve
the forward kinematic problem first. We also note that in the inverse
kinematic problem we usually want to compute all possible solutions,
because in real world some joint settings might not be possible or less
practical.

Figure 2. Two possible joint settings where one is not
possible due to an obstacle.
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2. Forward Kinematic Problem

In this section we present methods to explicitly write down the move-
ment function. For our robot we introduce a global coordinate system
(x1, y1) placed at joint 1. Additionally we define for every revolute joint
i a local coordinate system (xi+1, yi+1) with origin placed at joint i and
the positive xi+1-axis along the direction of segment i + 1. We note
that for every i ≥ 2 the (xi, yi) coordinates of joint i are (li, 0), where
li is the length of segment i (possibly plus the extension of prismatic
joints in between).

From Linear Algebra we know how to express the coordinates of a
point (ai+1, bi+1), given in the coordinate system (xi+1, yi+1), in the co-
ordinate system (xi, yi), namely by multiplying with a rotation matrix
and adding a translation vector:(

ai
bi

)
=

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
·
(
ai+1

bi+1

)
+

(
li
0

)
,

or written equivalently asaibi
1

 =

cos(θi) − sin(θi) li
sin(θi) cos(θi) 0

0 0 1

 ·
ai+1

bi+1

1

 =: Ai ·

ai+1

bi+1

1

 .

Example 1: We now want to particularly consider the case where
n revolute and no prismatic joints occur. For simplicity we may do
some calculations with n = 3. Doing this matrix-multiplication above
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several times, we can express the hand in the global coordinate system:x1y1
1

 = A1 · · ·An

0
0
1

 .

By expanding this equation we obtain

(2.1) f(θ1, . . . , θn) =

∑n−1
i=1 li+1 cos(

∑i
j=1 θj)∑n−1

i=1 li+1 sin(
∑i

j=1 θj)∑n
i=1 θi

 .

Figure 3. 3 revolute and no prismatic joints.

We now want to find other ways of specifying f . By using the implicit
description of the circle, the domain J can also be written as the
product of a variety with real intervals

J = V ({x2i + y2i − 1 | 1 ≤ i ≤ n})× I1 × · · · × Ip,
and changing the movement function by the substitutions

ci = cos(θi), si = sin(θi)

and using trigonometric formulas we can write the hand position as a
polynomial mapping on J .

Example 1 (continued): The first two components of the movement
function can be written as

(2.2)

(
l3(c1c2 − s1s2) + l2c1
l3(s1c2 + s2c1) + l2s1

)
.
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The third component of the movement function, namely the orienta-
tion of the hand, cannot be written as a polynomial in this way. Since
J is now given as a variety, another possibility to represent the move-
ment function is by finding a rational parametrization. For the circle
we know that

(2.3) ci =
1− t2i
1 + t2i

, si =
2ti

1 + t2i

is such a rational parametrization. Now we can compose the polynomial
representation of f with these parametrizations and the hand position
is given rationally. This method decreases the number of variables
again (Note that we had a dependency on 2 variables in the first two
components of f in (2.1) and on 4 variables in (2.2)) and no constraints
in J are needed. We note that there is no possibility to give a surjective
rational parametrization of the circle. For our choice (2.3), (−1, 0) gets
only reached for ti goes to infinity. This implies that for certain hand
configurations we have to use very high values for the ti’s or even do
not reach it.

Example 1 (continued): By using (2.3), the hand position can be
described as a rational function on R2, namely by (t1, t2) maps to

(2.4)

(
l3(1−t21)(1+t22)+l2(1−4t1t2−t22+t21(−1+t22))

(1+t21)(1+t22)
2(l3t1(1+t22)+l2(t1+t2−t21t2−t1t22))

(1+t21)(1+t22)

)
.

Example 2: We shortly want to discuss the case where one prismatic
joint is right before the hand.

Figure 4. 3 revolute and 1 prismatic joints.
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Similarly as in (2.1) we havex1y1
1

 = A1 · · ·An

ln+1

0
1


and therefore,

f(θ1, . . . , θn, ln+1) =

∑n
i=1 li+1 cos(

∑i
j=1 θj)∑n

i=1 li+1 sin(
∑i

j=1 θj)∑n
i=1 θi

 .

In the case where n = 3, the first two components of the movement
function can be written as(

l4(c1(c2c3 − s2s3)− s1(c2s3 + c3s2)) + l3(c1c2 − s1s2) + l2c1
l4(s1(c2c3 − s2s3) + c1(c2s3 + c3s2)) + l3(s1c2 + s2c1) + l2s1

)
and we choose J = V (x21 + y21 − 1, x22 + y22 − 1, x23 + y23 − 1)× [m1,m2]
for some m1 < m2 ∈ R. Further reasonings can be made similarly to
Example 1.
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3. Inverse Kinematic Problem

In this section we continue Example 1 from before and discuss whether
it is possible to find a joint setting in order to realize a given point
(a, b) = (x1, y1) and orientation α of the hand. In the affirmative case
we want to find all such configurations. In other words, we want to
compute f−1({(a, b, α)}).

Example 1 (continued): Every hand orientation can be realized, since
θ3 is independent of the other variables and we can set it to θ3 = α −
θ1− θ2. Hence, we focus on placing the hand at (a, b). The polynomial
system

a = l3(c1c2 − s1s2) + l2c1,

b = l3(c1s2 + c2s1) + l2s1,

0 = c21 + s21 − 1,

0 = c22 + s22 − 1

can be derived from (2.2). We compute a Groebner basis with the lex
order c2 > s2 > c1 > s1 in R(a, b, l2, l3)[s1, c1, s2, c2] and keep a, b, l2, l3
as parameters to obtain:

G =



c2 −
a2 + b2 − l22 − l23

2l2l3
, s2 +

a2 + b2

al3
s1 −

a2b+ b3 + b(l22 − l23)

2al2l3
,

c1 +
b

a
s1 −

a2 + b2 + l22 − l23
2al2

, s21 −
a2b+ b3 + b(l22 − l23)

l2(a2 + b2)
s1+

(a2 + b2)2 + (l22 − l23)2 − 2a2(l22 + l23) + 2b2(l22 − l23)

4l22(a2 + b2)


.

As long as we keep the parameters as abstract variables, G re-
mains a Groebner bases. However, if we substitute some real num-
bers to the parameters- this is called specialization- we first have to
be careful with denominators and second, the new polynomial system
G|{a,b,l2,l3} ∈ R[s1, c1, s2, c2] does not have to be a Groebner basis any-
more. In general, there will be a lower dimensional subspace W ⊂ R4

where G|{a,b,l2,l3} is not a Groebner basis anymore. When W is the
empty set, the initial Groebner basis G is called a comprehensive Grob-
ner bases, see for example in the appendix of [2].

Example 1 (continued): Let us choose l2 = l3 = 1. We can either use
this specialization in G or recompute the Groebner basis with these
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values to obtain

G|{l2=1,l3=1} =



c2 −
a2 + b2 − 2

2
,

s2 +
a2 + b2

a
s1 −

a2b+ b3

2a
,

c1 +
b

a
s1 −

a2 + b2

2a
,

s21 − bs1 +
(a2 + b2)2 − 4a2

4(a2 + b2)
,


,

which will remain a Groebner basis also for further specialization where
a 6= 0. Under this assumption we can compute

s1 =
b

2
±
|a|
√

4− (a2 + b2)

2
√
a2 + b2

,

which are two distinct real values for 0 < a2 + b2 < 4 and a double root
for a2 + b2 = 4. The values for c1, c2, s2 are uniquely determined then.
This is exactly what we would have expected from geometrical point
of view: The maximum distance between joint 1 and 3 is l2 + l3 = 2,
where this extremal position can be reached only in one way, whereas
there are two possibilities to set joint 2 for closer positions of the hand.
Now let us consider a = 0 (and b 6= 0). We first do the specializations
and then compute the Groebner basis

G|{a=0,l2=1,l3=1} =

{
c2 −

b2 − 2

2
, s2 − bc1, c21 +

b2 − 4

4
, s1 −

b

2

}
.

Note that the form of this Groebner basis differs a lot from the previous
ones. We obtain one solution for s1 and two distinct real values for c1
if |b| < 2 and a double root if |b| = 2.
To summarize, given any point (a, b) for the place of the hand, there
are

• infinitely many distinct settings of joint 1 when a2 + b2 = 0,
• two distinct settings of joint 1 when a2 + b2 < 4,
• one setting of joint 1 when a2 + b2 = 4,
• no possible setting of joint 1 when a2 + b2 > 4.

Let Jf denote the Jacobian matrix of the configuration mapping f .
The Jacobian matrix is an m × n matrix, where n = dim(J ),m =
dim(C), with rank at most min(m,n). We call a c ∈ J a kinematic
singularity, if the rank of Jf (c) is strictly less than min(m,n).



10 ROBOT KINEMATICS

Example 1 (continued): We compute the Jacobian matrix

−
∑n−1

i=1 li+1 sin(
∑i

j=1 θj) −
∑n−1

i=2 li+1 sin(
∑i

j=1 θj) . . . −ln sin(θn−1) 0∑n−1
i=1 li+1 cos(

∑i
j=1 θj)

∑n−1
i=2 li+1 cos(

∑i
j=1 θj) . . . ln cos(θn−1) 0

1 1 . . . 1 1

 .

When all θi ∈ {0, π}, then the first row is equal to zero and the rank
is smaller or equal to two for those c.
When n = 3, we are also able to use the determinant of Jf to check
their rank:

det(Jf ) = sin(θ1 + θ2) cos(θ1)− cos(θ1 + θ2) sin(θ1) = sin(θ2),

which is equal to zero if and only if θ2 ∈ {0, π}. This are exactly the
cases where a2 + b2 ∈ {0, 4} in the notation of polynomials.

So far we have taken a look which configurations of the hand can
be realized. The motion, the process for reaching this configuration,
has not been of interest. An important question, however, is to find a
path from an initial hand configuration to a new desired configuration
and try to minimize the total joint movement. Kinematic singularities
play in important role in motion planning. Let us assume that j(t)
is a joint space path with image c(t) = f(j(t)). Then we obtain by
differentiation with respect to t

(3.1) c′(t) = Jf (j(t)) · j′(t)

We can interpret j′(t) as the joint space velocity and c′(t) as the velocity
of our configuration space path. If at time t0 the joint space path j(t0)
passes through a kinematic singularity, (3.1) may not have a solution for
j′(t0). This means that there is no smooth joint path j(t) corresponding
to a c(t) moving in certain directions.

Example 1 (continued): Let θ1 = 0 and θ2 = π, then

c′(t0) = Jf (t0) · j′(t0) =

0 0 0
0 −1 0
1 1 1

 · j′(t0).
If we want to move the hand in the x1-direction, the first component
of c′(t0) should be non-zero which is not possible for any j′(t0)!
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Figure 5. At a kinematic singularity

Also close to kinematic singularities problems can occur, since the
Jacobian matrix will almost have non-maximal rank and in this situ-
ation very large joint space velocity may be needed to archive a small
configuration space velocity.

Figure 6. Near a kinematic singularity.
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