CAAG Projects

Project report: 07/05/2019
Project presentation: 25/06/2019

The following projects are supposed to be worked out throughout the semester. Every project group should hand in a short paper and a program plus some examples. For the programs you can use any computer algebra system that does not directly deliver all tasks which are asked.

1 Project Bézout's Theorem

In [1] is given an alternative way of proving Bézout's Theorem.

- Analyze the paper and explain the results and the reasoning in your own words.
- Implement the proposed algorithm to compute intersection points of affine plane curves.

2 Project Parametrizing quartic curves

Consider an irreducible curve \mathcal{C} of degree 4 in the affine plane over \mathbb{C}.

- Check whether \mathcal{C} has only ordinary singularities and compute its genus in the affirmative case.
- Suppose that \mathcal{C} is of genus zero (i.e., either 1 triple point or 3 double points). Determine a rational parametrization of \mathcal{C} as it is described in the lecture notes
a) by lines through the triple point of \mathcal{C}.
b) by conics through the double points and a given rational curve point P.

3 Project Elliptic curves

Let \mathcal{C} be a cubic with a rational point P. In [2] is described a way of defining a group action on \mathcal{C}.

- Describe the definition of the group action and its properties in detail.
- Implement the performance of the group action and the scalar multiplication.
- Explain how this can be used in cryptography and give some examples of encoding and decoding a message.

Literatur

[1] J. Hilmar, and C. Smyth. Euclid Meets Bézout: Intersecting Algebraic Plane Curves with the Euclidean Algorithm The American Mathematical Monthly, 117(3):250-260, 2010.
[2] J.H. Silverman, and J. Tate Rational Points on Elliptic Curves. Springer Verlag, New York, 1992.

