## Exercise sheet 11

meeting on 18/06/2019

Let $\mathcal{P}$ be a rational parametrization of an affine curve $\mathcal{C}$ defined by $f \in K[x, y]$. The tracing index, denoted by $\operatorname{index}(\mathcal{P})$ refers to the number of times $\mathcal{P}$ generates almost all points of $\mathcal{C}$ and can be computed for example with the formula

$$
\operatorname{index}(\mathcal{P})=\frac{\operatorname{deg}(\mathcal{P})}{\max \left(\operatorname{deg}_{x}(f), \operatorname{deg}_{y}(f)\right)}
$$

Let $\mathcal{P}(t)=\left(\frac{\chi_{11}(t)}{\chi_{12}(t)}, \frac{\chi_{21}(t)}{\chi_{22}(t)}\right)$ be a proper parametrization. Then

$$
\operatorname{gcd}_{K(\mathcal{C})[t]}\left(x \cdot \chi_{12}(t)-\chi_{11}(t), y \cdot \chi_{22}(t)-\chi_{21}(t)\right)=D_{1}(x, y) t-D_{0}(x, y)
$$

for some polynomials $D_{0}, D_{1} \in K[x, y]$ and

$$
\mathcal{P}^{-1}(x, y)=\frac{D_{0}(x, y)}{D_{1}(x, y)}
$$

Exercise 42 a) Check that

$$
\mathcal{P}(t)=\left(\frac{t^{3}+1}{t^{2}+3}, \frac{t^{3}+t+1}{t^{2}+1}\right)
$$

is a proper rational parametrization of an affine curve $\mathcal{C}$, i.e. $\operatorname{index}(\mathcal{P})=1$.
b) Compute the defining polynomial of $\mathcal{C}$.
c) Compute the rational inverse $\mathcal{P}^{-1}$.

