Exercise sheet 10

meeting on 04/06/2019

Exercise 38 Let F define an irreducible curve having singularities of multiplicities r_{1}, \ldots, r_{m}.
a) Compute the minimal degree n of F.
b) In the computation you get two possible intervals for n. Analyze the lower one and conclude whether this is a possible scenario.
c) Can you make the same conclusions if you allow reducible F ?

Exercise 39 Let $\mathcal{H}(d, D)$ be the linear system of curves of degree d generated by the effective divisor D. Derive a lower bound for the dimension of $\mathcal{H}(d, D)$.

Exercise 40 Consider the linear systems of cubics $\mathcal{H}\left(3, D_{i}\right)$ generated by the following effective divisors.
a) $D_{1}=2 \cdot(0: 1: 1)+(1: 0: 1)$;
b) $D_{2}=2 \cdot(0: 1: 1)+2 \cdot(1: 0: 1)$.

What is the dimension of $\mathcal{H}\left(3, D_{i}\right)$? Choose some curves in $\mathcal{H}\left(3, D_{i}\right)$ and plot them. What do you obtain?

Exercise 41 Let \mathcal{C} be the irreducible projective curve defined by the form $F \in K[x, y, z]$ such that \mathcal{C} is not a line and let ψ be the ring homomorphism between $K[x, y, z]$ and $\Gamma(\mathcal{C})$ such that

$$
\psi(x)=\left[\frac{\partial F}{\partial x}\right], \psi(y)=\left[\frac{\partial F}{\partial y}\right], \psi(z)=\left[\frac{\partial F}{\partial z}\right]
$$

a) Show that $\operatorname{ker}(\psi)$ is a homogeneous prime ideal. This implies that $V(\operatorname{ker}(\psi))$, the so-called dual curve of \mathcal{C}, is irreducible.
b) Prove that $V(\operatorname{ker}(\psi))$ is the algebraic closure of

$$
\left\{\left.\left(\frac{\partial F}{\partial x}(P): \frac{\partial F}{\partial y}(P): \frac{\partial F}{\partial z}(P)\right) \right\rvert\, P \in \mathcal{C} \text { is simple }\right\} .
$$

c) Compute the dual curve of $F=x^{3}+y^{3}-z^{3}$.

