Exercise sheet 9

meeting on $28 / 05 / 2019$

To simplify computations you may use a Computer Algebra System.
Exercise 34 Let \mathcal{C} be an affine curve defined by the polynomial $f \in K[x, y]$ of degree $d, P=$ $(a, b) \in \mathbb{A}^{2}(K)$ be such that $\operatorname{mult}_{P}(\mathcal{C})=r \geq 1$ and $T(x, y)=\left(x+a_{0}, y+b_{0}\right)$ be a linear change of coordinates. Show the following:
a) There is choice for a_{0}, b_{0} such that T applied to the first non-vanishing term of the Taylor expansion of f transforms it into a homogeneous polynomial of degree r.
b) For every $a_{0}, b_{0} \in K$ and $f^{T}(x, y):=f\left(x+a_{0}, y+b_{0}\right)$ it holds that $\operatorname{mult}_{T^{-1}(P)}\left(f^{T}\right)=r$.
c) If $a=b=0$, then f has the form $f=f_{r}+f_{r+1}+\cdots+f_{d}$, where f_{j} are forms of degree j. Moreover, the tangents to \mathcal{C} at P are the linear factors of r.
To conclude, mult $_{P}(\mathcal{C})$ can be computed by moving P to the origin and then reading off the lowest occurring degree.

Exercise 35 Compute and classify all (including projective) singularities of the curves defined by the following polynomials.
a) $f_{1}=x^{4}+y^{4}-x^{2} y^{2}$.
b) $f_{2}=y^{2}+\left(x^{2}-5\right)\left(4 x^{4}-20 x^{2}+25\right)$.
c) $f_{3}=x^{4}+x^{2}\left(2+y^{2}\right)-2 x^{3} y-6 x y+1$.

Exercise 36 Compute the intersection points and its multiplicity of the curves given by the polynomials $f=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}$ and $g=x^{2}+y^{2}-1$. Verify your result by Bézout's Theorem.

Exercise 37 Find a polynomial defining an irreducible cubic curve with one singularity, namely a non-ordinary double point at the origin with tangent $x+y$, and $(1: 1: 0)$ and $(0: 1: 0)$ as curve points at infinity.

