Exercise sheet 9

meeting on 28/05/2019

To simplify computations you may use a Computer Algebra System.

Exercise 34 Let C be an affine curve defined by the polynomial $f \in K[x, y]$ of degree $d, P = (a, b) \in \mathbb{A}^2(K)$ be such that $mult_P(C) = r \ge 1$ and $T(x, y) = (x + a_0, y + b_0)$ be a linear change of coordinates. Show the following:

- a) There is choice for a_0, b_0 such that T applied to the first non-vanishing term of the Taylor expansion of f transforms it into a homogeneous polynomial of degree r.
- b) For every $a_0, b_0 \in K$ and $f^T(x, y) := f(x + a_0, y + b_0)$ it holds that $mult_{T^{-1}(P)}(f^T) = r$.
- c) If a = b = 0, then f has the form $f = f_r + f_{r+1} + \cdots + f_d$, where f_j are forms of degree j. Moreover, the tangents to C at P are the linear factors of r.

To conclude, $mult_P(\mathcal{C})$ can be computed by moving P to the origin and then reading off the lowest occurring degree.

Exercise 35 Compute and classify all (including projective) singularities of the curves defined by the following polynomials.

- a) $f_1 = x^4 + y^4 x^2 y^2$.
- b) $f_2 = y^2 + (x^2 5)(4x^4 20x^2 + 25).$
- c) $f_3 = x^4 + x^2(2+y^2) 2x^3y 6xy + 1.$

Exercise 36 Compute the intersection points and its multiplicity of the curves given by the polynomials $f = (x^2 + y^2)^3 - 4x^2y^2$ and $g = x^2 + y^2 - 1$. Verify your result by Bézout's Theorem.

Exercise 37 Find a polynomial defining an irreducible cubic curve with one singularity, namely a non-ordinary double point at the origin with tangent x + y, and (1 : 1 : 0) and (0 : 1 : 0) as curve points at infinity.