Exercise sheet 8

meeting on $21 / 05 / 2019$

Exercise 30 Let $V=V\left(z^{2}-\left(x^{2}+y^{2}-1\right)\left(4-x^{2}-y^{2}\right)\right) \subset \mathbb{R}^{3}$ and let $\pi: V \rightarrow \mathbb{R}^{2}$ be the projection $\pi(x, y, z):=(x, y)$.
a) For which subsets $R \subset \mathbb{R}^{2}$ does $(a, b) \in R$ imply $\pi^{-1}(a, b)$ consists of two points, one point, no point?
b) Conclude whether π can be a regular isomorphism. Can you make π to a regular isomorphism by restricting the domain of definition to a subvariety $W \subset V$ and the image correspondingly?
c) Visualize V and $\pi(V)$.

Exercise 31 Show that if $V \subset \mathbb{A}^{n}$ is a reducible algebraic set, then $K\left[x_{1}, \ldots, x_{n}\right] / I(V)$ is in general not an integral domain by considering the following example.
a) Let $V=V(x y, x z) \subset \mathbb{R}^{3}$ and $f=y^{2}+z^{3}, g=x^{2}-x$. Show that neither f nor g but their product $f \cdot g$ is identically zero on V.
b) Let $V_{1}=V \cap V(f), V_{2}=V \cap V(g)$. Show that $V=V_{1} \cup V_{2}$.

Exercise $32 \quad$ a) Let $V=V\left(x^{2}+1\right) \subset \mathbb{R}[x]$. Compute $\Gamma(V)$.
b) Show that $\mathbb{R}[x] /\left\langle x^{2}-4 x+3\right\rangle$ is not an integral domain. Conclude that $\left\langle x^{2}-4 x+3\right\rangle$ is reducible.

Exercise 33 Let $V=V\left(y^{5}-x^{2}\right) \subset \mathbb{R}^{2}$.
a) Show that every element in $\Gamma[V]$ can be uniquely written as $a(y)+x b(y)$ with $a, b \in \mathbb{R}[y]$.
b) Conclude that V and \mathbb{R} cannot be isomorphic as a variety by showing that there is no ring isomorphism between $\Gamma[V]$ and $\mathbb{R}[t]$.
c) Show that $\mathbb{R}(V)$ can be identified as $\{a(y)+x b(y) \mid a, b \in \mathbb{R}(y)\}$.

