## Exercise sheet 7

meeting on $14 / 05 / 2019$

Exercise 26 [Theorem 5.2.1] Let $f, g \in R\left[x_{1}, \ldots, x_{n}\right], F, G$ forms in $R\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Then show the following:
a) $(F \cdot G)_{*}=F_{*} \cdot G_{*}$ and $(f \cdot g)^{*}=f^{*} \cdot g^{*}$.
b) If $r$ is the highest power such that $x_{n+1}^{r} \mid F$, then $x_{n+1}^{r} \cdot\left(F_{*}\right)^{*}=F$, whereas $\left(f^{*}\right)_{*}=f$.
c) $\quad(F+G)_{*}=F_{*}+G_{*}$ and $x_{n+1}^{t}(f+g)^{*}=x_{n+1}^{\max (0, r-s)} f^{*}+x_{n+1}^{\max (0, s-r)} g^{*}$, where $r=\operatorname{deg}(g), s=$ $\operatorname{deg}(f), t=\max (r, s)-\operatorname{deg}(f+g)$.

Exercise 27 Consider the affine variety $V=V\left(y-x^{3}+x\right)$.
a) Compute the projective closure $V^{*}$ of $V$.
b) Dehomogenize $V^{*}$ one time with respect to $x$ and one time with respect to $y$ and visualize the resulting affine varieties to get a better understanding of $V^{*}$.

Exercise 28 a) Show that every homogenous polynomial $f \in \mathbb{C}[x, y]$ of degree $d$ can be factored into linear homogenous polynomials, i.e.

$$
f(x, y)=\prod_{i=1}^{d}\left(a_{i} x+b_{i} y\right)
$$

b) Let $g(x)=x^{3}-2 x^{2}-x+2$. Compute the homogenization $g^{*}$ and a decomposition of $V_{p}(g)$. Visualize $V_{a}(g), V_{p}(g)$ and the cone $C\left(V_{p}(g)\right)$.

Exercise 29 Let $I_{0}=\left\langle x_{1}, \ldots, x_{n+1}\right\rangle \subset K\left[x_{1}, \ldots, x_{n+1}\right]$.
a) Show that every homogenous ideal $\emptyset \neq I \subset K\left[x_{1}, \ldots, x_{n+1}\right]$ is contained in $I_{0}$.
b) Compute for any $r \in \mathbb{N}$ the ideal $I_{0}^{r}$ and an appropriate set of generators. Deduce that every form of degree greater or equal to $r$ is in $I_{0}^{r}$.
c) Consider $V_{p}\left(I_{0}\right)$ and $V_{a}\left(I_{0}\right)$ and show that $I_{p}\left(V_{p}\left(I_{0}\right)\right) \neq I_{a}\left(V_{a}\left(I_{0}\right)\right)$. Compare to Lemma 5.2.5.

