## Exercise sheet 6

meeting on 30/04/2019

Exercise 22 Let $I$ be an ideal and $J$ be a primary ideal of $R$, where $R$ is a commutative ring with 1.
a) Let $I$ be primary and $\sqrt{I}=\sqrt{J}$. Show that then $I \cap J$ is primary.
b) Show that if $I$ is prime and $J \subseteq I$, then $\sqrt{J} \subseteq I$.

Exercise 23 Let $I$ be a primary ideal with $\sqrt{I}=P$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Show the following:
a) If $f \in I$, then $I:\langle f\rangle=\langle 1\rangle$;
b) If $f \notin I$, then $I:\langle f\rangle$ is primary with $\sqrt{I:\langle f\rangle}=P$;
c) If $f \notin P$, then $I:\langle f\rangle=I$.

Exercise 24 Let $f=x^{2} y-z^{2}$ and $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$.
a) Compute $I:\langle f\rangle$ and show that it is prime.
b) Show that $I$ has the decomposition $\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$.
c) Show that also $\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$ is prime by computing a (polynomial) parametrization of the corresponding variety.

Based on the previous two examples it is worth mentioning that for every radical ideal $I \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$ with prime decomposition

$$
I=\bigcap_{i=1}^{r} P_{i},
$$

the $P_{i}$ 's can be found in the set $\left\{I:\langle f\rangle \mid f \in k\left[x_{1}, \ldots, x_{n}\right]\right\}$. You may think about what this means for the algebraic set $V(I)$ and its decomposition.

Exercise 25 a) Consider the cuspidal cubic given by $y^{2}=a x^{3}$ with $a \neq 0$. Compute the intersection points of two distinct cuspidal curves.
b) The relations $y-x^{2}=0, z-x^{3}=0$ define a space curve in $\mathbb{R}^{3}$. Consider the corresponding algebraic set projectively and compute its points at infinity. Use this to find two proper (projective) subvarieties.

