Exercise sheet 6

meeting on 30/04/2019

Exercise 22 Let I be an ideal and J be a primary ideal of R, where R is a commutative ring with 1.

- a) Let I be primary and $\sqrt{I} = \sqrt{J}$. Show that then $I \cap J$ is primary.
- b) Show that if I is prime and $J \subseteq I$, then $\sqrt{J} \subseteq I$.

Exercise 23 Let I be a primary ideal with $\sqrt{I} = P$ and $f \in k[x_1, \ldots, x_n]$. Show the following:

- a) If $f \in I$, then $I : \langle f \rangle = \langle 1 \rangle$;
- b) If $f \notin I$, then $I : \langle f \rangle$ is primary with $\sqrt{I : \langle f \rangle} = P$;
- c) If $f \notin P$, then $I : \langle f \rangle = I$.

Exercise 24 Let $f = x^2y - z^2$ and $I = \langle xz - y^2, x^3 - yz \rangle$.

- a) Compute $I : \langle f \rangle$ and show that it is prime.
- b) Show that I has the decomposition $\langle x, y \rangle \cap \langle xz y^2, x^3 yz, x^2y z^2 \rangle$.
- c) Show that also $\langle xz y^2, x^3 yz, x^2y z^2 \rangle$ is prime by computing a (polynomial) parametrization of the corresponding variety.

Based on the previous two examples it is worth mentioning that for every radical ideal $I \subset k[x_1, \ldots, x_n]$ with prime decomposition

$$I = \bigcap_{i=1}^{r} P_i,$$

the P_i 's can be found in the set $\{I : \langle f \rangle \mid f \in k[x_1, \ldots, x_n]\}$. You may think about what this means for the algebraic set V(I) and its decomposition.

Exercise 25 a) Consider the cuspidal cubic given by $y^2 = ax^3$ with $a \neq 0$. Compute the intersection points of two distinct cuspidal curves.

b) The relations $y - x^2 = 0$, $z - x^3 = 0$ define a space curve in \mathbb{R}^3 . Consider the corresponding algebraic set projectively and compute its points at infinity. Use this to find two proper (projective) subvarieties.