Exercise sheet 5

meeting on $09 / 04 / 2019$

Exercise 18 a) Let I be an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $V(I)$ is finite. Show that for every $1 \leq k \leq n-1$ and $\left(a_{k+1}, \ldots, a_{n}\right) \in V\left(I_{k}\right)$ there exists an $a_{k} \in \mathbb{C}$ such that $\left(a_{k}, a_{k+1}, \ldots, a_{n}\right) \in V\left(I_{k-1}\right)$, where $I_{0}=I$.
b) Let I be an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $V\left(I_{k}\right) \neq \emptyset$ for an $1 \leq k \leq n-1$. Then $V\left(I_{k-1}\right) \neq \emptyset$.

Exercise 19 Let $f, g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be irreducible such that f and g have the same roots. Show that f is equal to g up to multiplication with a scalar.

Exercise 20 Consider the system of equations

$$
x^{2}+2 y^{2}=3, x^{2}+x y+y^{2}=3 .
$$

a) If I is the ideal generated by these equations, find generators for $I \cap K[x]$ and $I \cap K[y]$.
b) Compute $V(I)$.
c) Which elements in $V(I)$ are rational?
d) Repeat the previous tasks with the equations $x^{2}+2 y^{2}=2, x^{2}+x y+y^{2}=2$.

Exercise 21 In the proof of Theorem 4.2.6 the following is needed:
Let $P_{1}, \ldots, P_{r} \in \mathbb{A}^{n}(K)$ be pairwise different. Construct polynomials $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f_{j}\left(P_{i}\right)=\left\{\begin{array}{l}
0, i \neq j \\
1, i=j
\end{array} .\right.
$$

