Commutative Algebra and Algebraic Geometry

Exercise sheet 3

meeting on 26/03/2019

Exercise 10 Find the Zariski closure of the following sets in $\mathbb{A}^2(\mathbb{C})$:

- a) $\{(n^2, n^3) \mid n \in \mathbb{N}\};\$
- b) $\{(x,y) \mid x^2 + y^2 \le 4\}.$

Exercise 11 [Lemma 3.1.3] Let $X, Y \subseteq \mathbb{A}^n(K), S \subseteq K[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n \in K$. Then show the following:

- a) If $X \subseteq Y$, then $I(X) \supseteq I(Y)$.
- b) $I(\emptyset) = K[x_1, \dots, x_n]$ and $I(\mathbb{A}^n(K)) = \{0\}$ for infinite K.
- c) $I(\{(a_1, ..., a_n)\}) = \langle x_1 a_1, ..., x_n a_n \rangle.$
- d) $I(V(S)) \supseteq S$ and $V(I(X)) \subseteq X$.
- e) I(X) is radical.

Exercise 12 Consider a planar robot with a revolute joint 1, segment 2 of length l_2 , a prismatic joint 2 with settings $l_3 \in [0, m_3]$ and a revolute joint 3 with segment 4 being the hand.

- a) Find appropriate joint and configuration spaces \mathcal{J} and \mathcal{C} , respectively, and the movement mapping f in terms of trigonometric functions with the joint angles as argument.
- b) Convert f into a polynomial function on a variety and then into a rational mapping.
- c) Does the robot have kinematic singularities?

Exercise 13 Study the inverse kinematic problem from Example 1 in the lecture notes on robot kinematics with the following settings:

- a) $l_2 = 1, l_3 = 2;$
- b) $l_2 = 2, l_3 = 1.$

Interpret your results geometrically and explain the special cases.