Exercise sheet 3

meeting on 26/03/2019

Exercise 10 Find the Zariski closure of the following sets in $\mathbb{A}^{2}(\mathbb{C})$:
a) $\left\{\left(n^{2}, n^{3}\right) \mid n \in \mathbb{N}\right\}$;
b) $\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.

Exercise 11 [Lemma 3.1.3] Let $X, Y \subseteq \mathbb{A}^{n}(K), S \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $a_{1}, \ldots, a_{n} \in K$. Then show the following:
a) If $X \subseteq Y$, then $I(X) \supseteq I(Y)$.
b) $\quad I(\emptyset)=K\left[x_{1}, \ldots, x_{n}\right]$ and $I\left(\mathbb{A}^{n}(K)\right)=\{0\}$ for infinite K.
c) $I\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$.
d) $\quad I(V(S)) \supseteq S$ and $V(I(X)) \subseteq X$.
e) $\quad I(X)$ is radical.

Exercise 12 Consider a planar robot with a revolute joint 1 , segment 2 of length l_{2}, a prismatic joint 2 with settings $l_{3} \in\left[0, m_{3}\right]$ and a revolute joint 3 with segment 4 being the hand.
a) Find appropriate joint and configuration spaces \mathcal{J} and \mathcal{C}, respectively, and the movement mapping f in terms of trigonometric functions with the joint angles as argument.
b) Convert f into a polynomial function on a variety and then into a rational mapping.
c) Does the robot have kinematic singularities?

Exercise 13 Study the inverse kinematic problem from Example 1 in the lecture notes on robot kinematics with the following settings:
a) $l_{2}=1, l_{3}=2$;
b) $\quad l_{2}=2, l_{3}=1$.

Interpret your results geometrically and explain the special cases.

