## Exercise sheet 2

meeting on $19 / 03 / 2019$

Exercise 6 A well-known theorem in geometry is the following: Every triangle $A B C$ in $\mathbb{R}^{2}$ the lines orthogonal to the sides of the triangle, going through the midpoint of the corresponding side, have a point in common.


We want to prove this theorem by using Groebner bases:
a) Write $f_{1}, f_{2}, f$ as polynomials in $\mathbb{R}[x, y]$ depending on the parameters $a, b, c$.
b) Show that $f \in \sqrt{\left\langle f_{1}, f_{2}\right\rangle}$.

Exercise 7 [Lemma 2.2.8] Let $I$ be an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ and let $p=\left(x_{1}-a_{1}\right) \cdots\left(x_{1}-a_{d}\right)$, where $a_{1}, \ldots, a_{d}$ are distinct. We want to show that

$$
I+\langle p\rangle=\bigcap_{j=1}^{d}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right)
$$

a) First show that $I+\langle p\rangle \subseteq \bigcap_{j}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right)$.
b) For the converse direction let $p_{j}=\prod_{i \neq j}\left(x_{1}-a_{i}\right)$. Prove that $p_{j} \cdot\left(I+\left\langle x_{1}-a_{j}\right\rangle\right) \subseteq I+\langle p\rangle$.
c) $\quad p_{1}, \ldots, p_{d}$ are relatively prime, i.e. there are $h_{1}, \ldots, h_{d}$ such that $\sum_{j=1}^{d} h_{j} p_{j}=1$. Show with this property and (b) that $\bigcap_{j=1}^{d}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right) \subseteq I+\langle p\rangle$.

Exercise 8 Let $I_{1}=\left\langle x^{3}+y\right\rangle, I_{2}=\left\langle x-y^{3}, x y^{2}\right\rangle$ and $I_{3}=\left\langle y^{3}(1-x)+x(x-1)\right\rangle$.
a) Compute a basis for $I_{4}=I_{1} \cdot\left(I_{2} \cap I_{3}\right), I_{5}=I_{1}+\left(I_{2} \cap I_{3}\right)$ and $I_{6}=I_{4}: I_{5}$.
b) Visualize the corresponding algebraic sets of (a).
c) Check that $I_{7}=I_{6}+\left\langle x-(y+1)^{2}\right\rangle$ is zero-dimensional and compute $\sqrt{I_{7}}$.

Exercise 9 a) Compute a basis for $\operatorname{Syz}\left(\left\{f_{1}, f_{2}\right\}\right)$ with $f_{1}, f_{2} \in K[x]$.
i) Does a non-trivial second syzygy exist?
ii) Can we generalize this to the case where $f_{1}, f_{2} \in K[x, y]$ ?
b) Calculate for general $F=\left\{f_{1}, \ldots, f_{m}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$ some (first) syzygies of $F$.

