## Exercise sheet 1

meeting on 12/03/2019

## Exercise 1 Let $k$ be a field.

a) Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f \notin\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Show that

$$
\left\langle x_{1}, \ldots, x_{n}, f\right\rangle=k\left[x_{1}, \ldots, x_{n}\right] .
$$

b) Let $I \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ be a principal ideal (it is generated by one element $f \in k\left[x_{1}, \ldots, x_{n}\right]$ ). Show that any finite set $F \subset I$ containing $f$ is a Groebner bases for $I$.

Exercise 2 Let $I \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and $G$ a Groebner bases of $I$. Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and denote the normal form of $f$ modulo $G$ by $\underline{f}$. Then the following hold:
a) $\underline{f}=\underline{g}$ if and only if $f-g \in I$.
b) $\underline{f+g}=\underline{f}+\underline{g}$.

Exercise 3 Let

$$
\begin{gathered}
f_{1}=y^{2}-x y-x z+1, \\
f_{2}=2 x y-2 x z+x^{2}+x, \\
f_{3}=2 x y-2 x z+x^{2}+1 .
\end{gathered}
$$

Compute the common roots of $f_{1}, f_{2}, f_{3}$ both by resultants and by Groebner bases.

## Exercise 4 Let

$$
a=a_{0}+a_{1} x+a_{2} x^{2}, b=b_{0}+b_{1} x
$$

be polynomials in $\mathbb{Q}[x]$ with unknown coefficients. Compute the polynomial relation between these coefficients if $a$ and $b$ have a common factor.

Exercise 5 Prove or disprove that the following rings are Noetherian:
a) Principal ideal rings such as the ring of integers $\mathbb{Z}$.
b) The Ring of polynomials in infinitely many variables such as $\mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$.
c) The ring of continuous functions from $\mathbb{R}$ to $\mathbb{R}$.

