Exercise sheet 1

meeting on 12/03/2019

Exercise 1 Let k be a field.

a) Let $f \in k[x_1, \ldots, x_n]$ such that $f \notin \langle x_1, \ldots, x_n \rangle$. Show that

 $\langle x_1, \ldots, x_n, f \rangle = k[x_1, \ldots, x_n].$

b) Let $I \leq k[x_1, \ldots, x_n]$ be a principal ideal (it is generated by one element $f \in k[x_1, \ldots, x_n]$). Show that any finite set $F \subset I$ containing f is a Groebner bases for I.

Exercise 2 Let $I \leq k[x_1, \ldots, x_n]$ be an ideal and G a Groebner bases of I. Let $f, g \in k[x_1, \ldots, x_n]$ and denote the normal form of f modulo G by \underline{f} . Then the following hold:

- a) f = g if and only if $f g \in I$.
- b) $\underline{f+g} = \underline{f} + \underline{g}$.

Exercise 3 Let

$$f_1 = y^2 - xy - xz + 1,$$

$$f_2 = 2xy - 2xz + x^2 + x,$$

$$f_3 = 2xy - 2xz + x^2 + 1.$$

Compute the common roots of f_1, f_2, f_3 both by resultants and by Groebner bases.

Exercise 4 Let

$$a = a_0 + a_1 x + a_2 x^2, \ b = b_0 + b_1 x$$

be polynomials in $\mathbb{Q}[x]$ with unknown coefficients. Compute the polynomial relation between these coefficients if a and b have a common factor.

Exercise 5 Prove or disprove that the following rings are Noetherian:

- a) Principal ideal rings such as the ring of integers \mathbb{Z} .
- b) The Ring of polynomials in infinitely many variables such as $\mathbb{Q}[x_1, x_2, \ldots]$.
- c) The ring of continuous functions from \mathbb{R} to \mathbb{R} .