
Design

What is “design”?

activity that gives structure to the solution
to a given problem

• takes us from a requirements statement to an
implementation

– analysis has some design activities

– design touches implementation issues

Requirements ImplementationDesign

What is design generally?

• a Synthesis: the combination of things to build a larger whole

• an Analysis: the examination of things to understand their important
aspects

• Common types of synthesis in design:
– Selection of elements from a library to add to your system

– Invention of new elements

– Composition of elements in your system

– Choice of parameters of elements

• Common types of analysis in design:
– Syntactic and semantic checks

– Heuristic review by experts

– Comparison to past experience

– Design checklists

– Simulation

– Empirical analysis (actual measurements)

Design challenges

• Cognitive challenges:

– Limited knowledge

– Biases (expertise, experience, etc.)

• Usability challenges of current tools

• Process involving many stakeholders with

intersecting interests

Design outputs

• Primary output: architecture

 definition of abstractions of interest in the

system and of the relations between them

– abstractions: objects, processes, tuples,

components

• [abstractions are actually concrete]

• may not be continuous (physically): a process (e.g.

a use case) comprises procedures scattered

among various objects

The software design process

Object-oriented approach

• OO analysis

– develop an object model of the application
domain

• OO design

– develop an object-oriented system model to
implement requirements

• OO programming

– realize an OO design using an OO
programming language such as Java, C++, C#

Object oriented design

Characteristics

• Objects: abstractions of real-world or system
entities
– manage themselves

– independent

– encapsulate state and representation information

• System functionality – expressed in terms of
object services

• Features:
– shared data areas are eliminated

– objects communicate by message passing

– objects may be distributed and may execute
sequentially or in parallel

Real world

Advantages of OO design

• easier maintenance

• objects may be seen
as stand-alone
entities

• objects are potentially
reusable components

• usually there is an
obvious mapping from
real world entities to
system objects

O1

O2

O3

System

O1

O2

O3

Objects and classes

• Objects

– entities in a software system

– represent instances of real-world and system

entities

• Object classes

– templates for objects

– may be used to create objects

– may inherit attributes and services from other

object classes

Objects and classes (Sommerville)

• An object is an entity that has a state and a defined set
of operations which operate on that state. The state is
represented as a set of object attributes. The operations
associated with the object provide services to other
objects (clients) which request these services when
some computation is required.

• Objects are created according to some object class
definition. An object class definition serves as a template
for objects. It includes declarations of all the attributes
and services which should be associated with an object
of that class.

Object communication

• Conceptually, objects communicate by message
passing

• Message – request for a service

• Message content
– The name of the service requested by the calling

object

– Copies of the information required to execute the
service

– The name of a holder for the result of the service.

• Usually messages are implemented as
procedure (function) calls
– Name = procedure name;

– Information = parameter list.

Objects relationships

• Inheritance

• Aggregation

• ...

• Associations: may indicate that an

attribute of an object is an associated

object or that a method relies on an

associated object

Objects relationships

• may be annotated with information that

describes the association

PickUpSticks

Object relationships (excerpt)

Object execution

• “execution” – an object gets hold of a
processor and puts it to run some code

• the code belongs to a function of the
object (a method)

• usually this executi on takes
places inside a process

• serial execution

– the process starts, executes some code, ends

– also called single-threaded

Threads and objects

• Thread

– describes a path of execution within a process

• Multithreaded programs

– Programs that run as processes which start

more than one thread

– The threads compete to grab system

resources (processor time)

– Each thread may consist of functions that

span several objects

Objects and concurrency

• Concurrency: objects may execute in

parallel

• A system may consist of more than one

process

• Interaction is possible: via messaging

• Function call is just an instance of

messaging

Communication

• Synchronous:

– Call / send message

– Wait for the callee to complete

• Asynchronous:

– Call / send message

– Execute further code

Types of concurrent objects

• Servers

– The object runs as a parallel process

– Methods start after an external message is received

– After finishing the operation, the server suspends

itself

• Active objects

– The object runs as a parallel process

– Its state may change by internal operations

– The process never suspends itself

Object oriented design processes

Process stages

1. Define the context and models of use of the

system;

2. Design the system architecture;

3. Identify the principal system objects;

4. Develop design models;

5. Specify object interfaces.

System context and models of use

• detect the relationships between the software being
designed and its external environment

• system context
– static model

– mention other systems in the environment

– subsystem model: show parts that make up the system

• models of system use
– dynamic model

– describes how the system interacts with its environment

– use-cases:

• show interactions

• described in natural language

– process models

• diagrams with the most important processing steps

Models of system use

New product

notification

Deposit

database

Company

database

Extract/generate

data

of new product

Decide position

for new product

Generate order

for crane

Give order

to crane

Accept notification

of execution

Update

company database

Update

deposit database

Company

database

Deposit

database

„done‟ notification

user intervention

product type,
dimension, etc.

position on
the deposit
floor

ADMSys: Add new product to deposit

Architectural design

• use the knowledge about interactions

between the system and its environment

to design the system architecture

• architecture should be simple: keep the

number of entities in an architectural

model low

Processes

ResourceControllers

Example

Simulation of a coffee machine

System architecture

WaterController

CoffeeController

CoinController

GUI

OrderModule Maintenance

Module

OrderView Maintenance

View

OperationView

Operation

Module

Example

GUI

-Provides visualization services

1. Displays the shape of the coffee

machine

2. Displays the dynamic of

processed

1. Ordering

2. Maintenance

3. Operation (preparation of

beverages)

 …

Simulation of a coffee machine

System architecture

(continued)

Simulation of a coffee machine

System architecture

ResourceControllers

-Provides control for resources

1. Water

2. Coffee

3. Coins

• Water Controller

1. Maintains current water

volume

2. Allows filling (through

Maintenance)

3. Allows removal of specific

quantities (through

Operation)

…

Object identification

• the most difficult part of OO design

• no 'magic formula' for object identification

• use your skills, experience and domain

knowledge

• iterative process – you may not get it right

first time

Approaches to identification

• grammatical approach:
– based on a natural language description of the system

– nouns – objects and attributes

– verbs – operations and services

• identification of tangible things in the application domain
– objects, roles, events, interactions, locations, organisational units

• behavioural approach
– understand first the overall behaviour of the system

– assign behaviours to parts

– identify objects based on what participates in what behaviour

• scenario-based analysis
– identify objects, attributes and methods in each scenario

Object identification: practicalities

• Extract some initial objects

• Refine the structure by extending them and

adding more objects

• Strategies

– Top-down

– Decomposition at equal level of abstraction

Design models

• show the objects and object classes and

relationships between them

• Static models

– describe the static structure of the system in

terms of object classes and relationships

• Dynamic models

– describe the dynamic interactions between

objects.

Examples of design models

• Sub-system models
– show logical groupings of objects into coherent

subsystems

• Sequence models / diagrams
– show the sequence of object interactions

• State machine models
– show how individual objects change their state in

response to events

• Other models
– use-case models

– aggregation models

– generalization models

Example

An instance of

class A contains an

instance of class B

as member

Class B inherits

class A, or class B

implements

interface A.

PickUpSticks

Object Model

Objects Description

Stick Contains information about one stick (color,

position, orientation(

StickBoard Offers a visualization of the list of sticks.

Collects mouse events.

…

Example

States

“edit” In ‘edit’ state, the system allows the user to edit parameters of the

game, generate a new set of sticks, and view hall of fame.

“play” In ‘play’ state, the system allows the user to remove sticks by clicking

on them. While in ‘play’ state, it is not possible for the user to

modify game settings or to generate a new set of sticks.

Events

“start” The user clicks on the “Start playing” button.

“stop” The user clicks on the “Stop” button.

PickUpSticks

State machine diagram

Object interface specification

• needed for designing in parallel objects
and components

• objects may have several interfaces

═ viewpoints on the methods provided.

• details of the implementation of an
interface should not be specified

• an interface is a contract

– no matter the implementation, the class that
represents it is assumed to fulfil the contract.

• Next delivery:

– A set of models

• System architecture

• Process and/or Data flow and/or State machine and/or

Data models and/or Sequence diagrams

• Object models with textual descriptions of classes.

(you should describe the most important abstractions in your project

within at least 4 models)

(do not forget: textual descriptions of all diagram elements!)

– Snapshot(s) / sketches of the GUI

You can use e.g. Visual Paradigm for drawing the models

• Deadline: 2017 May 25

https://www.visual-paradigm.com/download/?edition=me

Homework

Consider the module diagram of ADMSys,
on slide 20 of lecture 6.

Assuming that there is an object that
realizes the crane controller, figure out
some of its most important services (public
methods).

(Please be aware that there are at least two different
schemes for the services offered by a crane controller.)

