Application architecture

System architecture

¢ System structuring:
— Repository
— Client-server
— Layered

e Control:

— Centralized
o Call-return
 Manager

— Event-based

» Broadcast
* Interrupt-driven

Application perspective

« (Generic types of applications
Data-processing
Transaction-processing
Event-processing
Language-processing

> w e

Data-processing systems

Data-processing systems

« Systems that are data-centered

 No or reduced user intervention
— Examples: payroll, billing, accounting
* The databases are usually orders of magnitude
larger than the software itself

Data Is input and output in batches

— Input: A set of customer numbers and associated
readings of an electricity meter;

— Output: A corresponding set of bills, one for each
customer number.

Usually have an input-process-output structure.

Data processing applications

System

Input Process Output
Printer

‘ Database I

Input-Process-Output

* Input:
— reads data from a file or database,
— checks its validity
— queues the valid data for processing.

* Process
— takes a transaction from the queue (input),
— performs computations

— creates a new record with the results of the
computation.

* Output
— reads these records,

— formats them accordingly
— writes them to the database or sends them to a printer

Representation

* Records are processed serially

* No need to store state information

» Function-oriented systems (rather than object-
oriented)

» Data-flow diagrams are suitable models
« Show data as it moves through the system

« Show end-to-end processing
— All functions that act on data are visible

Example: data-flow for payroll

Employee
records

Decoded
employee
record

Read employee
record

Validate
employ ee data

Pay mformation

Monthly pay
data

Write tax

Tax deduction + SS transactions

Valid

employee record

mmmber+taxoffce
Write pension .
Monthly pay dIa)lta ‘ Pension data I
rates

Pension
deduckn+
SS number
Empoyee data PRINTER
+ deductions
Net payment + bank

account info.

Bank

transactions

Write bank
transaction
Write social Socialsecurty
security data data

Tax
tables

Social security

deducton+ SSmumber

Transaction-processing systems

Transaction-processing systems

« Database-centered
* Process user requests
« Update information in a system database.

« Examples:
— Interactive banking,
— e-commerce,
— booking systems,
— Information systems

Transaction-processing systems

* Process
— requests for information from a database
— requests to update a database.

* From a user perspective a transaction is:

Any coherent seguence of operations that
satisfies a goal

* The requests are asynchronous

* They are processed by a transaction
manager.

Structure of TP Apps

1/O Appiication Transaction
processing logic ‘ manager I_’ ‘ Database I

Transactions

 are defined from the database point of view
— a transaction Is a set of operations treated as
a single unit (atomic)

— all operations In a transactions must be
completed before changes in the database
are made permanent

— failure of operations within a transaction
should not lead to database inconsistencies

Example: cash dispenser

Input Process Output

Get customer

account id
Query account

Print details

Select service Dispense cash

0100
1

Validate card (Return card '
‘ Updateaccourt '
ATM

Database

Specifics of TP applications

« Highly distributed

* Many types of terminals that interact with users

» May include middleware:

» infrastructure software that help manage interactions
between distributed entities and system database

» Transaction management middleware :
« handle communications with different terminal types
* serializes data
» sends data for processing

Typical examples

 Information management systems
* Resource management systems

Information management systems
* An information ‘ P I
system allows
ContrO”ed aCCGSS User communications
to a large base of {—I
Information
Information retrieval and modification I
Transaction management I
Database

Resource management systems

 Manage a limited amount of some resources

* The resources are allocated to users who
requests them

« Examples:
— Ticketing systems
— Timetabling systems (the resource is a time period)
— Library systems

— AlIr traffic management systems (the resource is a
segment of airspace)

Resource allocation system model

| User interface I

User Resource Query

authentication delivery menagenent
Resource Resource policy Resource
management control allocation

Transaction management
Resource database

Event-processing systems

Event-processing systems

* respond to events in the system’s
environment

» key characteristic:
—event timing Is unpredictable,

—the architecture has to be organized to
handle this.
* common systems:
— word processors,
— games, etc.

Typical event-processing systems

* Real-time systems
» Editing systems
— Single user systems;

— Must provide rapid feedback to user actions;

— Organized around long transactions so may
Include recovery facilities

Editing systems architecture

File System

Save
Open

Y

Ancillary data Editor data
Ancillary | Editing
commands commands

Command

Display

Interpret

Update

Event

Process

Screen

Refresh

Language processing systems

Language processing systems

« Accept a natural / artificial language as input

« Generate some other representation of that
language

[May include an interpreter to act on the instructions in
the language that is being processed |

« Used In situations where the easiest way to
solve a problem is to describe an algorithm or
describe the system data

— Meta-case tools process tool descriptions, method
rules, etc. and generate tools.

Interpreters: Generic architecture

Translator
Instructions Check syntax
Chedk serantics
Generate

Abstract m/c
instructions

Interpreter

Data Fetch Results
Execute

Compilers: repository model

printer j
-

analy ser 4 analyser /2 analyser /2
Y 4 - P 4

Abstract Grammar
sy nfax tree definition
Sy m bol Output
table definition

Repository

Optimiser §

> 4

generator 4

Compilers: data-flow model

Symboltabk

Sy ntax tree

Lexical
analy sis

Sy ntactic 7 Semantic
analysis /) analysis

C# Lecture

Graphical User Interfaces:
NET Windows Forms

 Introductory remark:

—There are currently 2 platforms that provide
support for creating GUIs with C#:

1. .NET Windows Forms

2. .NET Windows Presentation Foundation
(WPF).

— | will only speak about the first platform.

Graphical user interfaces

« C# project type: Windows Forms
Application
—reference to System.Windows.Forms

automatically added
— ...and to other packages necessary for, e.g.,
drawing.

» A class that Is supposed to have

windowed user interface must inherit from
Form.

Windows

public partial class Forml1 : Form

{
public Form1()
{
InitializeComponent();
}
}
partial :

— the code of the class Is split into more .cs-files
— each file contains a part of the class

— this is the normal file structure generated automatically
by the Visual Studio designer.

Windows

« Showing a window:
— In program.cs / Main:

Application.Run(new Form1());

— ...but it Is possible to create and show a window
at any time (for instance, dialog-boxes):
Form f = new Form();
f.Show();

Windows

 Add controls:

- A few buttons,
- A Panel

Controls

* Placing controls
— The components hosting controls are containers

— Examples of containers:
* Form,
* Panel,
* GroupBox,
« TabControl

— Other controls can be added to containers

Placing controls

« Laying out controls:

— In the designer
« fine-tuning possible, using “Properties” view, in Visual Studio

— In code

« *.Designer.cs contains values set in designer (do not modify: it
IS automatically [re]created by Visual Studio designer!)

« directly in the form’s .cs file
* Layout concepts:
— Docking,
— Anchoring.

Other controls

.E]!Fo["\l
[stent] [pane -
I
button4

tabPage1 | tabPage2

© radioButton

[checkLB ftem 2

iy [7] checkLB ftem 3

B N.Odeo
: El N'odeo_1
2 Node0_1_1

Delegates

e from MSDN:

— a delegate is similar to a function pointer in C or C++
— encapsulates a reference to a method

— a delegate declaration defines a [reference] type that encapsulates a
method with a particular set of arguments and return type

[<access>] delegate <return_type> <name>(<param_list>)

— delegates can be composed using the "+" operator
— an instance of a delegate is created with new

public delegate void SendString (string s);
SendString mySendStringDelegate = new SendString(DisplayMessage);

private void DisplayMessage(string s)

[}

Events

e Sources — event generators

e Listeners — event consumers
— must provide event handle

I listener
: |:| listener

event source

listener

Events

e from MSDN:

An event in C# Is a way for a class to provide notifications
to clients of that class when some interesting thing happens
to an object.

 the object transmits a notification, to whatever Is
Interested, that something has happened / changed

« events are declared using delegates.

Events

public class MyClassWithEvent {

public event SendString NewMessage;

public void MyFunction() {
bool ok = true;
if (!'ok) OnNewMessage(“Not OK!”);

}

private void OnNewMessage(string msg) {
if (NewMessage != null)

NewMessage(msg);
}
}
public class AnotherClass
{

MyClassWithEvent myClass = new MyClassWithEvent ();
myClass.NewMessage += new SendString(DisplayMessage);

Event mechanism

 The event consumers must:

— register its event handling function to the event
source (also called wiring)

« Example - adding a click handler to a button:

myBrowseButton.Click +=
new System.EventHandler (browseButton Click);

void browseButton Click (object sender, EventArgs e)
{

/] ...
}

Event handlers

e recommended:

public delegate void MyEventHandlingDelegate
(object sender, TArgs e);

 where TArgs Is a type derived from EventArgs.

Events for Ul-components

« mouse events (Click, MouseUp, MouseDown, ...)
* key events (KeyPress, KeyDown, ...)

» selection events (SelectedindexChanged, ...)

» check events (CheckedChanged)

« form-specific events (Load, Resize, ...)

Homework

« Using the four generic application types, can you classify
any of the following systems (or parts of them)?
— ADMSys
— Leo dictionary
— The system behind the website geizhals.at

