
The Design Document

Design phase: deliverables

• Main delivery: design document

Design = an activity that gives structure to the solution to a given problem

• the design phase starts with the requirements document and maps
the requirements into architecture

• the architecture defines the components, their interfaces and
behavior

• the design document describes a plan to implement the
requirements

• contains details on:
– computer programming languages and environments,

– machines,

– packages,

– application architecture,

– distributed architecture layering, memory size, platform, algorithms, data
structures, global type definitions, interfaces…

• may include the usage of existing components

Design document template (1)

• Introduction

• System Overview

• Design Considerations

– Assumptions and
Dependencies

– General Constraints

– Goals and Guidelines

– Development Methods

• Architectural Strategies

– strategy-1 name or
description

– strategy-2 name or
description

– ...

• System Architecture

– component-1 name or
description

– component-2 name or
description

– ...

• Policies and Tactics

– policy/tactic-1 name or
description

– policy/tactic-2 name or
description

– ...

• Detailed System Design

– module-1 name or
description

– module-2 name or
description

– ...

• Glossary

• Bibliography

(Software projects survival guide)

Design document template (2)

• Introduction
– Describe the purpose, scope and intended audience

– Identify the system/product using any applicable names and/or
version numbers.

– Provide references for any other pertinent documents such as:

• Related and/or companion documents

• Prerequisite documents

• Documents which provide background and/or context for this
document

• Documents that result from this document (e.g. a test plan or a
development plan)

– Define any important terms, acronyms, or abbreviations

– Summarize (or give an abstract for) the contents of this
document.

http://www.construx.com/survivalguide/desspec.htm

Design document template (3)

• System Overview
– Provide a general description of the software system:

• functionality and

• matters related to the overall system and its design

• [discussion of the basic design approach or organization]

• Design Considerations
– describes many of the issues which need to be addressed or

resolved before attempting to devise a complete design solution

• Assumptions and Dependencies
– Describe any assumptions or dependencies regarding the

software and its use:
• Related software or hardware

• Operating systems

• End-user characteristics

• Possible and/or probable changes in functionality

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (4)

• General Constraints
– global limitations or constraints that have a significant impact on

the design:
• Hardware or software environment

• End-user environment

• Availability or volatility of resources

• Standards compliance

• Interoperability requirements

• Interface/protocol requirements

• Data repository and distribution requirements

• Security requirements (or other such regulations)

• Memory and other capacity limitations

• Performance requirements

• Network communications

• Verification and validation requirements (testing)

• Other means of addressing quality goals

• Other requirements described in the requirements specification

http://www.construx.com/survivalguide/desspec.htm

Design document template (5)

• Goals and Guidelines
– goals, guidelines, principles, or priorities which

dominate or embody the design of the system's
software:

• emphasis on speed versus memory use

• working, looking, or "feeling" like an existing product

– for each such goal or guideline, unless it is implicitly
obvious, describe the reason for its desirability

• Development Methods
– describe the method or approach used for this

software design

– include a reference to a more detailed description of
formal or published methods

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (6)

• Architectural Strategies
– decisions and/or strategies that affect the overall organization of the system and

its higher-level structures

– should provide insight into the key abstractions and mechanisms used in the
system architecture

– the reasoning employed for each decision and/or strategy and how any design
goals or priorities were balanced or traded-off

• Use of a particular type of product (programming language, database, library, etc. ...)

• Reuse of existing software components to implement various parts/features of the
system

• Future plans for extending or enhancing the software

• User interface paradigms (or system input and output models)

• Hardware and/or software interface paradigms

• Error detection and recovery

• Memory management policies

• External databases and/or data storage management and persistence

• Distributed data or control over a network

• Generalized approaches to control

• Concurrency and synchronization

• Communication mechanisms

• Management of other resources

http://www.construx.com/survivalguide/desspec.htm

Design document template (7)

• System Architecture
– high-level overview of how the functionality and responsibilities of the system

were partitioned and then assigned to subsystems or components

– not too much detail about the individual components themselves

– main purpose: to gain a general understanding of how and why the system was
decomposed, and how the individual parts work together to provide the desired
functionality

– major responsibilities that the software must undertake and the various roles that
the system (or portions of the system) must play

– how the system was broken down into its components/subsystems

– how the higher-level components collaborate with each other

– provide some sort of rationale for choosing this particular decomposition

– make use of design patterns

– include any diagrams, models, flowcharts, documented scenarios or use-cases
of the system behavior and/or structure

• Subsystem Architecture
– more detailed discussion of particular components

– how the component was further divided into subcomponents, and the
relationships and interactions between the subcomponents

– recurse if necessary, but leave the details for the Detailed System Design section

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (8)

• Policies and Tactics
– Choice of which specific product to use (compiler, interpreter, database,

library, etc. ...)

– Engineering trade-offs

– Coding guidelines and conventions

– The protocol of one or more subsystems, modules, or subroutines

– The choice of a particular algorithm or programming idiom (design
pattern) to implement portions of the system's functionality

– Plans for ensuring requirements traceability

– Plans for testing the software

– Plans for maintaining the software

– Interfaces for end-users, software, hardware, and communications

– Hierarchical organization of the source code into its physical
components (files and directories).

– How to build and/or generate the system's deliverables (how to compile,
link, load, etc. ...)

http://www.construx.com/survivalguide/desspec.htm

Design document template (9)

• Detailed System Design
– detailed description of the components introduced in “System Architecture”

chapter

– Classification
• kind of component, such as a subsystem, module, class, package, function, file, etc.

– Definition
• specific purpose and semantic meaning of the component.

– Responsibilities
• primary responsibilities and/or behavior of this component:

– What does this component accomplish? What roles does it play?

– What kinds of services does it provide to its clients?

– Constraints
• relevant assumptions, limitations, or constraints for this component: on timing, storage,

or state

• might include rules for interacting with this component (preconditions, postconditions,
invariants, data formats and data access, synchronization, exceptions, etc.)

– Composition
• description of the use and meaning of the subcomponents that are a part of this

component.

http://www.construx.com/survivalguide/desspec.htm

Design document template (10)

• Detailed System Design (continuation)
– Uses/Interactions

• collaborations with other components:
– What other components is this entity used by?

– What other components does this entity use?

• known or anticipated subclasses, superclasses.

– Resources
• resources that are managed, affected, or needed by this entity: memory, processors,

printers, databases, or a software library

• discussion of any possible race conditions and/or deadlock situations, and how they
might be resolved.

– Processing
• how this components goes about performing the duties necessary to fulfill its

responsibilities

• encompass a description of any algorithms used; changes of state; relevant time or
space complexity; concurrency; methods of creation, initialization, and cleanup; and
handling of exceptional conditions.

– Interface/Exports
• services (resources, data, types, constants, subroutines, and exceptions) provided by

this component

http://www.construx.com/survivalguide/desspec.htm

Design document template (11)

• Detailed Subsystem Design

– detailed description of this software component (or a reference to such

a description)

– include diagrams showing the details of component structure, behavior,

or information/control flow

• Glossary

– ordered list of defined terms and concepts used throughout the

document.

• Bibliography

– list of referenced and/or related publications.

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Development

Development

Development = writing a program based on a design

 specification

• Types of development

– Traditional – waterfall model - coding starts after the

system is fully specified and models have been

designed

– Incremental – produce & deliver software in

increments

Traditional development

Incremental development

Coding

Coding

• Coding: the process of writing programs

• Coding conventions

– Set of rules that guide the shape of written code

– Important for improving the readability and

understandability

– almost always company-specific

• each software company has its own guidelines and

conventions for writing code

• File organization

• Naming conventions

• Formatting

• Statements and declarations

Code conventions

File organization

• A file should contain one class

• There should be a specific order:

– Beginning comments

– [file guard – for header files in C++]

– Include / import / using

– Class declarations / definitions

File structure conventions

• Beginning comments:

/**

 * File : Graph.cs

 * Classes : Graph

 * Namespaces : CombinatorialOptimization.GraphBase

 * Author : Petru Pau

 * Initial author : Petru Pau

 * Date : 24 May 2006

 * Copyright(c) : 2006 RISC Software GmbH

 **

 *

 * Description: class Graph contains the abstract data type

 * graph: A collection of nodes and edges.

 *

 **/

File structure conventions (2)

• File guards (for C++ header files)

#ifndef FILENAME_H

#define FILENAME_H

. . .

#endif // FILENAME_H

File structure conventions

• Class declarations / definitions; example:

– Public methods

– Protected methods

– Private methods

– [Public variables] – should not exist

– Protected variables

– Private variables

Naming conventions

• Depend on the programming language

• Examples:

– Descriptive names: meaningful, self-
explanatory, in English

– Avoid abbreviations (unless necessary: URL)

– Positive meaning
•isEmpty(), not isNotEmpty(),

•isEnabled() not isDisabled())

– Differentiate individual words by capitalizing:
shortestPath, not shortest_path

– Class names capitalized

Style conventions

• Lines:

– Not too long (max 120 characters)

– One statement per line

– If breaks are necessary:

• After a comma

• Before an operator

• Align the new line

• Indent

– Align code sequences with similar structure

Style conventions

• Methods:

– Not too long (max 25 lines)

• If longer, split into more methods

– Single-purpose

– Not too many parameters

– Avoid side-effects

Style conventions

• Document the code:

– Describe each class

– Describe methods

– Describe statements (trailing comments)

Commenting code

/// <summary>

/// Class Graph represents an immutable graph.

/// . . .

/// </summary>

public class Graph : IGraph

{

 /// <summary>

 /// Computes a string representation of the graph.

 /// The string contains the adjacency lists of each node.

 /// </summary>

 /// <returns>the string representation of a graph</returns>

 public override string ToString()

 {

 StringBuilder myString = new StringBuilder(); // use this to speed up

 // concatenations

 . . .

 }

}

Formatting

• Use blank lines to separate groups of code

• Use consistent spacing around operators

• Use indentations

• Align braces (“{“)

[Formatting]

#include <stdio.h>

main(t,_,a)

char *a;

{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86, 0, a+1)+a)):1,t<_?main(t+1,

, a):3,main (-94, -27+t, a)&&t == 2 ?<13 ?main (2, _+1, "%s %d %d\n"

):9:16:t<0?t<-

72?main(_,t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\,/+#n

+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l

q#'+d'K#!/\+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){n\l]!/n{n#';

r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\n'wk nw' iwk{KK{nl]!/w{%'l##w#' i;

:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \

;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/“):t<-

50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == '/')+t,_,a\+1):0<t?main (2, 2 ,

"%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc \i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m

.vpbks,fxntdCeghiry"),a+1);}

Consistency

• recommendation:
– invent or choose a style, regarding:

• class names

• class members

• constants, local variables

• spacing

• alignments . . .

– stick to it!

• use it consistently in all your code files.

Published guidelines

• A beautiful list of guidelines for C#

code can be downloaded from:
http://csharpguidelines.codeplex.com/downloads/get/540283

http://csharpguidelines.codeplex.com/downloads/get/540283

• Third delivery

– A prototype of your application

• An archive with the source files for a running version of your

software, with more or less full functionality

– The solution/project/workspace folders/files will be provided

– No compiled objects (.class, .dll, .obj, .exe, etc.), but

– I should be able to compile your sources.

– A description/documentation of classes

• as a separate archive containing

– document (Word, PDF) or

– HTML page, or

– MS Help file.

• Deadline: Friday June 22.

C# lecture

Class libraries

• Class Libraries  DLL files (Dynamic Link Libraries)

– Help to organize things by grouping related classes and

interfaces

– not executable (cannot be started as programs/applications)

• their content is used by other libraries or executables

– easily created and used in .NET, with Visual Studio

both executable programs and class libraries created in .NET

are “assemblies”

 - they are described by some specific information (name,

 version, company, etc.)

APIs

• “Application Programming Interface”

– The set of classes and/or their public methods

that are offered by an application or library.

Documenting code

• Similar to C++

– /* … */ for comments that span more lines

– // for comments that go to the end of current line

• Special comments: ///

– contain text enclosed in XML tags (<summary>)

– VisualStudio code editor generates automatically

tags for relevant information (method

parameters, return values)

Documenting code

• check the documentation in Help to see the

most important XML tags

• these special comments can be exported as

an XML file

– in Visual Studio, check “XML documentation file”

in the “Properties” dialog of the project (page

“Build”)

Documenting code

• use e.g. Sandcastle or Doxygen to generate

the final documentation (in MS Help format,

or HTML).

https://github.com/EWSoftware/SHFB
http://www.stack.nl/~dimitri/doxygen/

Homework

• pinpoint possible problems and style inconsistencies in the following C# code snippet:

1. List<bool> restricted;

2. List<string> Liste_Bedingung;

3. SocketComm m_socket;

4. private bool SetConstraint(int _ndx){

5. if (restricted[_ndx]) Liste_Bedingung[_ndx] = "OK";

6. else

7. Liste_Bedingung[_ndx] = "nicht erfüllt";

8. return m_socket.communicate(_ndx + ": " + Liste_Bedingung[_ndx]);

9. }

10. public bool SetConstraints(int nrConstraints)

11. {

12. bool ret_val = true;

13. for (int i = 0; i < 8; i++)

14. {

15. bool b = SetConstraint(i);

16. ret_val = ret_val && b;

17. }

18. return ret_val;

19. }

