
Software Engineering 

Petru Pau 

ppau@risc.uni-linz.ac.at 



What is… 

• Software 

…computer programs   

…configuration data / 

program data    

…documentation   

 

• Software engineering 

– engineering discipline  

make things work:  

 apply theories, invent 

under constraints 

– …about software production 



Why “Software Engineering”? 



well... 

• Software is/will be everywhere (pervasive) 

→need for software production 

• Software has economic importance 

– increasing contribution to domestic gross 

product 

• Software occurs in critical systems 

→need for good software 



Not-so-good software… 

…is an official invitation  

 for disasters to happen 



Software glitches 



Software glitches 

• NASA Mars Polar Lander,  

– December 3, 1999 

– destroyed  

– its flight software falsely interpreted 

vibrations due to atmospheric turbulence 

– it believed that the vehicle had landed  

 shut off the engines 40 meters from the 

Martian surface () 
 

 



Software glitches 

• radiological emergency in Panama (May 

2001) 
– 28 patients overexposed (8 deaths) 

– radiotherapy equipment OK; cause in data entry; 

– for specific input data, radiation dose was incorrectly 

computed. 

 
http://www.fda.gov/cdrh/ocd/panamaradexp.html 



What does “good software” mean? 



Software quality 

• Measure:  

– bugs per thousand lines of code 

• Problem:  

– can be estimated after delivery 

• Industry average: 10 

 

• However, No Bugs ≠ High Quality 



What defines high-quality software? 

• …its attributes: 

Usability 

Efficiency  

Maintainability 

Dependability 

 

 



Back to Software Engineering… 



Relations 

• SE versus Computer Science: 

– Comp.Sci.:  theories & methods 

– SE:   practical methods for producing 

   software 



Relations 

• SE versus System Engineering 

– System Engineering: 

•  development & evolution of systems [where 

software may play a role] 

• includes hardware development, among others 

– specifying the system 

– defining architecture 

– integrating parts 

– SE – only a part of system engineering 

– System engineering – much older than SE 



Relations 

• SE versus coding (programming) 

– Coding: activity in software production 

– Coding: belongs to the problem, not to the 

    solution 



You should be aware… 

• SE will help you step beyond restrictions 
imposed by code / programming language 

• Thinking in advance always helps 

• Delegation and teamwork are essential 

• Keep it simple principle (it’s not easy!): 
“…there are two ways of constructing a software design: One 

way is to make it so simple there are obviously no 
deficiencies and the other way is to make it so complicated 
that there are no obvious deficiencies.” 

  Tony Hoare, Turing Award Lecture, 1980 



SE challenges 

• heterogeneity  

– software systems are required to run on 
different types of machines, op sys, etc. 

• delivery 

– shorten the delivery time without 
compromising quality 

• trust 

– users must be confident that the software 
works without doing any damage 



Some more definitions… 



What is… 

• Software [engineering] process: 

– all activities whose goal is the development & 

evolution of software 

 

Specification 

Development 

Validation 

Evolution 

 



What is… 

• Software process model 

– simplified description of a software process 

– paradigms: 

waterfall:  

 activities are considered one at a time 

iterative development:  

 interleaves specification, development, validation 

component-based SE:  

 integration of pre-existing components 



Costs 

0 50 100 25 75 

Waterfall 

0 50 100 25 75 

Iterative development 

Specification Design Development Integration & testing 

Specification Iterative development Testing 

0 50 100 25 75 

Component-based SE 

Specification Development Integration & testing 



Methods 

• SE Method:  

– structured approach to software development 

– goal: enable, support, enforce production of high 

quality software 

• Types: 

function-oriented 

object-oriented 

... 



CASE 

Computer Aided Software Engineering 

 

• Tools that support al phases of a software 

process 

– Editors 

– Report generators 

– Code generators 



You… 



Your responsibilities… 

…as (potential, future) software engineers: 

 

• Confidentiality 

• Competence 

• Respect intellectual property rights 

• Avoid computer misuse 



Your work… 

• proof of current knowledge 

– you get one question after each lecture, in the published slides 

  12 questions 

– you must know the answer at the next lecture (you may be asked 

to prove this!) 

– you can fail at most 5 questions 

– 20% of the final grade 

• either: 

– a project, or  

– a final theoretical exam 

– 80% of the final grade 



Your work for a project… 

• Prerequisites:  

1. a programming language (Java, C++, C#) 

2. experience in building user interfaces (UI) 

3. basics of algorithms and data structures 

4. e-mail addresses  

& access to computers with compilers for 
your preferred language  

& with packages for development of 
graphical UI 



Your work for a project… 

• proposed themes will be posted 

• deliveries: 4 artefacts,  

– will be announced later, with their due dates 

  four grades 

• required working time: ~2.5 hours/week 



Development tools 

• Microsoft Visual Studio 2010 or later, 

Express or Developer editions 

• Eclipse - 

http://www.eclipse.org/downloads/ 

– needs Java Runtime 

• see instruction in the download web page 

 

http://www.eclipse.org/downloads/


Recommended texts 



Homework 

• Think of (at least three) other attributes 

that may define software quality.  

– You should be able to describe them 

 


