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5.2 Rational Points on Conics

In the previous section we have analyzed optimal fields of parametrization
of a curve C over K with ground field K. The corollary to the theorem of
Hilbert-Hurwitz tells us that if the degree of C is odd then the optimal field of
parametrization is K, otherwise it is a field extension of K of degree at most
2. Furthermore, the algorithm HILBERT-HURWITZ shows how the problem of
checking the precise degree of this field extension can be reduced to the case
of conics.

In this section, we focus on the case of conics. For certain fields we can de-
cide the existence of rational points and, in the positive case, actually compute
such points. Therefore, over such fields, we can derive an optimal parametriza-
tion algorithm. We present here the classical approach, based on the Legendre
theory, for the case K = Q. For a description of the Legendre theory we re-
fer to [CrRO3], [IrR82], [Kra81], [LiN94] or [Ros88]. The relation of rational
points and optimal parametrization has been investigated in [HiW98].

Throughout this section, C is a projective conic with ground field Q, defined
by
F(z,y,2) = a12® + az2zy + azy® + aazz + asyz + as2?,

where a; € Q.

Our goal is to decide whether there is a rational point on C, and if so,
to compute one. By Theorem 5.6 we know that C has a rational point if and
only if Q is an optimal field of parametrization; hence, if and only if, C has
infinitely many rational points. In the following study, we distinguish between
parabolas, ellipses (including circles), and hyperbolas. The case of parabolas
is the easy one, and one may always, in fact, give an explicit formula for
a rational point on it. However, the case of ellipses and hyperbolas is not
so straight-forward. We need to manipulate the equation to reach a Legendre
equation. The Legendre equation lets us decide the existence of rational points,
and actually allows to compute such a point if it exists. In the sequel we denote
by Z* the set of nonzero integers, and by Z* the set of positive integers.

The Parabolic Case

We start by observing that C is a parabola if and only if the coefficients
of F(z,y, ) satisfy one of the following relations (see Exercise 2.3):

a% = 4a,a3 or aﬁ = 4aya¢ oOT ag = 4agzasg.

Let us assume w.l.o.g that a = 4a; a3, i.e. we consider a parabola with respect
to z and y, where 2 is the homogenizing variable. Furthermore, let us assume
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that a3 # 0 (otherwise, we may reason similarly by interchanging = and y).
Then we have the relation

4asF(z,y, 2) = (asx + 2a3y + asz)? + (4azaqs — 2aza5)zz + (4dazas — a?)22.
Since C is irreducible, this implies 4azas — 2az2as # 0. Thus,
(—2a3(4a3a6 — ag), —4dasazas + azag + 4asaszas, 4az(2asas — azas))

is a rational point on C.

Ezample 5.10. Consider the affine parabola defined by
flz,y) =22+ 2zy +v°> + =+ 2y — 2.

Since az # 0, we can use the formula, and we get the rational point (—3,2)
on the parabola.

The Hyperbolic and the Elliptic Case

The hyperbolic/elliptic case is characterized by the conditions
a% # 4aja3 and aZ # 4aia6 and ag # dazag

on the coefficients of F(z,y,2). By well-known techniques in linear algebra
(see [Kra81]) we can find a linear change of coordinates over Q transforming
the conic C onto a conic of the form

z? 4 ky? = €22 (5.1)
where k, £ € Q, and where either £ < 0 or £ > 0. This implies the existence
of real points. Now, expressing k and £ as k = k—l, {= ﬁ—l with k;, ¢; € Z*,

2 2
and cleaning up denominators in (5.1) we get the following equation over Z
A2 +b P +c22=0 (5.2)
] ’ .1"-1 fg ’ !'.’] kz
where a = lem(kg, £3), b = ———— and ¢ = ————F———.
(s, &2) ged(kz, £2) ged(ky, 62)

Clearly, a , b/, ¢ are nonzero and do not all have the same sign. Now, we want
to reduce (5.2) to an equation of similar form whose coefficients are squarefree
and pairwise relatively prime.

First, we express a/, b, c as

! 7 ’ ’ / !
a =ayr?, b =br2, ¢ =73,
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where a},b], ¢, are squarefree (see Exercise 5.5). We get the equation
alz? +bjy? + 122 =0 (5.3)

Note that (5.3) has an integral solution if and only if (5.2) has one.
Next, we divide (5.3) by ged(af, b], ¢}), getting
a”:z:2 + b//y2 + c"z2 =0 (5_4)

Now, we make the coefficients pairwise relatively prime. For this purpose, let
g1 = ged(a”,b"), o' = a"/qr, V" = b"/g1, and let (Z,7,Z) be an integral
solution of (5.4). Then g; | ¢/ 7%, and hence, since ged(a”,b”,¢”) = 1, we have
g1 | 2. Furthermore, since g; is squarefree (since a”, b’ are), we have g1 | Z.
So, letting Z = ¢12' and dividing (5.4) by g1, we arrive at the equation
a//lf2 + b///g2 + C’Igl (z/)z =0.
—

clt

At this point ged(a”’,b") = 1 and " is squarefree since ¢; and ¢’ are
relatively prime. Repeating this process with go = ged(a™, ") and g5 =
ged(d", """} we finally arrive at an equation

a(@')? +by)? +c()* =0,

where a, b, ¢ satisfy the requirements in the following definition.

Definition 5.11. Let a,b,c € Z be such that abc # 0, and they satisfy the
following conditions:

(1) a>0,b<0, andec<0
(i) a, b, andc are squarefree (5.5)
(i12) ged(a,b) = ged(a, c) = ged(b, c) = 1.

Then, the equation
ax? +by? +c22 =0 (5.6)

is called a Legendre Equation.

Solving the Legendre Equation

The problem of finding a rational point on an ellipse or hyperbola re-
duces to the problem of finding a nontrivial integral solution of the so called
Legendre Equation. Let us investigate necessary and sufficient conditions
for the Legendre equation to have nontrivial integral solutions. By a non-
trivial integral solution we mean a solution (Z,7,%2) € Z3 with (Z,7,2) #
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(0,0,0) and ged(%,7,Z) = 1. Such conditions are given by Legendre’s Theo-
rem (Theorem 5.17). Based on the description in [IrR82] we develop here a
constructive proof from which we can extract an algorithm to compute integral
solutions. For the formulation of Legendre’s Theorem we need to introduce
the notion of quadratic residues.

Definition 5.12. Let m,n € Z*. Then we say that m is a quadratic residue
modulo n, and we denote this by m Rn, if there exists ¢ € Z such that £ =,
m.

The problem of deciding whether m R n can be solved directly by checking
all the elements in Z,,. Alternatively, one may approach the problem by using
Legendre’s symbol (see [Coh00] or [IrR82] for the notion of Legendre’s sym-
bol). We outline here a method based on the notion of quadratic reciprocity
to solve this question. If n = 1 or n = 2 the problem is trivial, and we may
always assume w.l.o.g that n > 0 (see Exercise 5.7). In this situation, if n is
an odd prime number one can prove from the Law of quadratic reprocity (see
Section 18.5 in [vGG99]) that m R n if and only if
n—1
mz =,1.

So we will have to deal with the case where n > 2 and n is not a prime
number.

Lemma 5.13. Let n,m € Z* such that ged(m,n) = 1. If a € Z* satisfies
aRn and aRm, then a also satisfies a R nm.

Proof: Since a R n and a R m, there exist x1, 2 € Z such that
a:f =, a, x% =mn a.

In addition, ged(n, m) = 1 implies that there exist ¢}, £, € Z such that #jn —
tm = 1. Thus, there exist £1, £2 € Z, namely ¢; = £{(z2 —21), i = 1,2, such
that
1 +fin=mx0 + bom .

In this situation we prove that for z3 = x1 + €11 we get m% =nm @, from where
we deduce that a R nm. Indeed,

= (ry+ln)’ =22 =pa, 25=(22+Llm)’=n23=mna.
Thus, there exist k1, ks € Z such that
:v§ =a+kin=a+kom.

This implies that kyn = kom. But ged(n,m) = 1, and therefore n divides ks.
Hence, there exists k3 € Z such that ke = k3n, and then

m§=a+k3nm5nma. O
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Now let us return to consider the case where n > 2 and n is not a prime

number. Let
T
_— (=2
n= | I ;"
i=1

be the irreducible factorization of n. Then, m Rn implies that m Rn; for

it =1,...,r (see Exercise 5.7). Now, we distinguish two cases depending on
whether n is squarefree or not.
Suppose n is squarefree. Then, mRn if and only if mRn; fori =1,...,r

{(note that the left-right implication always holds and for the right-left impli-
cation see Lemma 5.13). Thus, in this case, one may check whether m R n by
checking whether mRn;, Vi=1,...,r. We have seen above how this can be
done for any prime number.

Now assume that n is not squarefree. Let m R n, and let x € Z be such that
z? =, m. Then, we know that 22 =,, m for i = 1,...,r. Thus, one may check
the existence of z as follows: if for some i € {1,...,r} we have that mRn;,
then m7Rn. On the other hand, assume that for every ¢ € {1,...,7} we have
mRn; and z; € Z is such that z2 =,, m (these z; are usually not unique).
For the possible z € Z such that z? =, m we must have that z = T
for some candidates ;. Thus, applying the Chinese Remainder Algorithm to
these congruences one determines the possible candidates for z (observe that
these candidates are z + k []]_; n;, for some k). Finally the problem is solved
by checking whether any of these candidates satisfies 2 =,, m.

So now let us return to our original problem of solving the Legendre equa-
tion. First, we state some preliminary technical lemmas.

Lemma 5.14. Let n € Z™*, and let o, 3, and v be positive non-integral real
numbers such that oy = n. Then, for every triple (a1, a2, a3) € Z3\{(0,0,0)},
the congruence

a1z + agy +azz =, 0

has a solution (Z,7,%) # (0,0,0) such that

Z| <o,y <p, and 2] <.

Proof: Consider the set
S={(z,y,2) eN? |z < o] and y < |B] and z < |v]} .

Note that card(S) = (1+ [a])(1+ |B]) (1 + |v]) > @B~ = n. Now we consider
the set A = {a1x+a2y+asz | (z,y,2) € S}. If card(A) < card(S), this means
that there exist at least two distinct elements (z1, y1, 21), (z2, Y2, 22) € S such
that

a1z1 + agy1 + a3zl = a172 + agxy2 + aszz .
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Now, let us assume that card(A) = card(S). Then, since card(S) > n and
there are n residue classes modulo 7, one deduces that there exist at least two
distinct elements (z1, 1, 21), (T2, Y2, 22) € 9 such that

a1T1 + agy1 + az21 =p 122 + agy2 +azzs .

In any case, (Z,7,2) = (1 — T2, 91 — Y2, 21 — 22) # (0,0,0) is a solution of the
congruence
a1z + agy + a3z =, 0 .

In addition, since «, 3, and vy are positive non-integral real numbers, and
T;,Yi,2 EN,weknow that 0 < z; < e, 0< y; < G, 0< 2z; <, fori=1,2.
Thus,

|Z| = |z1 — 22| < max{z1,z2} < @,

and similarly

[gl<B, and |z|<~. a

Lemma 5.15. Let m,n € N such that gcd(m, n) = 1, and let az® + by? + c22,
with a,b,c € Z, be a form that factors modulo m and modulo n. Then, az?® +
by? + cz? also factors modulo mn.

Proof: See Exercise 5.6. O

Lemma 5.16. Let r € Zt such that —1 R r. Then, the equation
?yi=r

has an integral solution.

Proof: First, since —1 R r, there exists 9 € Z and k € Z such that
2+ 1=kr.

Moreover, k € N* because r > 0. Let us assume that k = 1. Then, (zo,1) is a
nontrivial integral solution of the equation x2? + y? = r; hence the statement
holds. Now, let k > 1. Then, taking yo = 1, one has that (zg, ¥o) is a nontrivial
integral solution of the equation =2 + y? = kr. Then, let z1,y; be integers of
least absolute value such that z; =, zo, and y1 =k yo. Note that there exist
¢,d € Z such that x1 = 2o + ¢k, and y; = yo + dk. Thus,

22+ = (xo+ck)? + (yo+dk)? = 22+ 92 = 0.

Therefore, there exists k' such that z% + y? = k'k. Moreover, because of
|z1], [y1] < k/2, we get
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E\? [k\® 1
x§+y§s<§) +(§> =K,

and hence 0 < k' < £. Additionally

K'E’r = (K'k)(kr) = (22 + 12)(z3 + 1) = (Toz1 + Yoy1)* + (Toy1 — T1%0)*

ke — (3‘-0&?1 + Yoih )2 N (&”-n.m - iﬂwo)z
k k ’

Now, let z5 = (zoz1 + yoy1)/k, and y2 = (zoy1 — z1Y0)/k- We observe that

and therefore

Tox1 + Yoy1 = To(To + ck) + yo(yo + dk) =, 25 + y2 =x 0,

and
Zoy1 — T1Yo = To(yo + dk) — yo(xo + ck) =x O .

Thus, T2, y2 € Z, and (2, y2) is a nontrivial integral solution of 2% +y2 = k'r.
In this situation, since k' < k, we either have a solution of z% + 4% = r (i.e. if
k'’ = 1) or we may apply the previous reasoning again. Proceeding inductively
we finally finish the proof. O

Remark. The proof of Lemma 5.16 is constructive. In the following we outline
the corresponding algorithmic process. For this purpose, we will denote by
“gr” an algorithmic procedure that decides whether mRn, and that in the
affirmative case outputs x € Z such that 22 =,, m. Then, given r € Z* such
that —1Rr, the computation of o, 8 € Z such that »r = a? + 82, can be
performed as follows.

1. Determine

2 32
Q= qr(—l,T'), ﬂ = 1, k S o T;- .
r
2. While k£ > 1 do
: 3y [
ar:=amodk, f(1:=FBmodk, a:= ﬂfla&ﬂ,
af —a o® + 42
ﬂ2 = “Tlﬁ’ o= g, ﬂ::ﬂz, k= T'B .

3. Return (o, ). O

Now we are ready for stating Legendre’s Theorem.

Theorem 5.17. (Legendre’s Theorem) The Legendre equation ax?+by*+
cz% = 0 has a nontrivial integral solution if and only if (—ab) R ¢, (—bc)Ra,
and (—ac)Rb.
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Proof: Let (Z,7,%) be a nontrivial integral solution of ax? + by? + c2? = 0.
Note that we can assume w.l.o.g that ged(Z,y,Z) = 1. First we prove that
gcd(c, ) = 1. Indeed, if any prime p divides gcd(c,Z), then p divides by?.
Because of (5.5), ged(b,¢) = 1, so p does not divide b. Thus, p divides 7.
Consequently, p? divides aZ? + bj%, and hence p? divides ¢z2. Because of (5.5)
c is squarefree, which implies that p divides Z. Therefore, p divides ged(Z, 7, Z),
which is impossible. So, we have proved that ged(c,Z) = 1.

Now, since ged(c,T) = 1 there exist A, 4 € Z such that e + uZ = 1. This
implies that uZ =, 1. Furthermore, from the equality aZ? + b3 + cz% = 0 we
get that aZ? =, —b72. Thus,

V2 uly? =, —ab(Zp)? =, —ab ,

and consequently we have (—ab) R c. The remaining conditions can be derived
analogously.
In order to prove the reverse implication we first deal with three special cases.

1. Case b = ¢ = —1. In this case, the hypothesis (—bc) R a implies that
—1Ra. So, by Lemma 5.16 there exist r, s € Z such that 72 + s% = a.
Hence, in this case, (1,1, s) is a nontrivial integral solution of the Legendre

equation.

2. Case a = 1, b = —1. In this case (1,1,0) is a nontrivial integral solution
of the Legendre equation.

3. Case a = 1, ¢ = —1. In this case (1,0,1) is a nontrivial integral solution

of the Legendre equation.

Now, we treat the general case. Since (—ab) R ¢, there exists t € Z such that
t? =, —ab.

On the other hand, because of (5.5) we have gcd(a, ¢) = 1. Thus, there exists
a* € Z such that aa* =, 1, and therefore

az? 4+ by? + c2® =, aa* (az? + by?) = a*(a®z? + aby?)
=, a*(a®z? — t*y?) = a*(az — ty)(az + ty)
= (z — a*ty)(az + ty) .

Using the remaining hypotheses (i.e. (—bc) R @, and (—ac) R b) and reasoning
similarly as above we see that ax? 4- by? + c2? can also be expressed as a
product of linear factors modulo b and modulo a. Then, taking into account
Lemma 5.15 and (5.5), we deduce that there exist as, ..., ag € Z such that

az® + by? + c2? =gpe (a1 + agy + a32)(asz + asy + asz) .
Now, we consider the congruence

(a1 + a2y + aszz) Zabc 0 .
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Since we are not in any of the special cases, and since a, b and c satisfy
(5.5), we have that v/bc, v/—ac, and v/—ab are non-integral real numbers, and
their product is abe. Applying Lemma 5.14 to the previous congruence, with
a =vbe, = /—ac, and v = v/—ab, we deduce that there exists a nontrivial

integral solution, say (z1,¥1,21) of a1z + agy + a3z =qpc 0, where
lz1] < Vbe, |y < v—=ac, and |z| < v—ab .
Thus, taking into account that
az® 4 by® + c2® =ape (012 + a2y + aaz) (s + asy + ae2) ,

we deduce that
az? + by? + c2? =4 0 .
Furthermore, since b and ¢ are negative and |z;| < V/be, the above inequalities
imply that
az? + by? + c2? < az? < abe .
Moreover, since a > 0, |y1| < vV—A4Ac, |z1] < vV—ab and b, ¢ are negative, we

have
ax? + by? + c22 > by? 4 c2? > b(—ac) + c(—ab) = —2abc .

Thus, az? + by? + c2? is a multiple of abc, and —2abe < az? + by? + c2? < abe.
Hence, we are in one of the following cases:

az? +by? + ¢z =0, or az? + by? + c23 = —abe .

If the first case the result follows immediately. So let us assume that az? +
by? + cz? = —abc. In this situation, we introduce the integers

T =1x121 — by, Yo =Y121+axy, 2= zf +ab .
For these numbers we get the relation

az? + byZ 4 c22 = a(z121 — by1)2 + (w21 + az1)? + (22 + ab)? =
= (ax? + by? + c2?)2? — 2abx1y121 + 2abz1y121 +
+ab(by? + az? + c2?) + abez? 4 a*bc
= (—abc)2? + ab(—abc) + abez? + a®b?c =0 .

Thus, (z2, Y2, z2) is a solution. Furthermore, it is a nontrivial solution. Indeed,
if 27 + ab = 0, the coprimality and squarefreeness of @ and b imply that a =1
and b = —1. But this case has been treated above.

This completes the proof. Nontrivial solutions have been found in all cases.
O

Theorem 5.17 characterizes the existence of nontrivial solutions of the
Legendre equation by means of quadratic residues. However, from the proof it
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is not clear how to compute a solution if it exists. In the following, we see how

to approach the problem algorithmically. For this purpose, we first introduce

the following notion.

Definition 5.18. Let ax®+by?4cz? = 0 be a Legendre equation. The equation
—2?2 4 (—ba)y® + (—ca)z® = 0

is called the associated equation to the Legendre equation.

Remark. Consider the equation of the form —z2+ Ay?+ Bz2 = 0, where A, B

are positive squarefree integers. This equation is associated to the Legendre
equation ged(4, B)z? — gcdt'j,“my2 — gcd[i,}:’i]zz =0. O

Theorem 5.19. The Legendre equation has a nontrivial integral solution if
and only if its associated equation has a nontrivial integral solution.

Proof: Let (A, i, y) be a nontrivial integral solution of the Legendre equation
az? +by? +c22 =0, i.e.

ad + bl ey =0.
Multiplying by —a, we get
—(aN)? 4 (—ab)p® + (—ac)y? =0.

Thus, (—aA, i, ) is a nontrivial integral solution of the associated equation
to the Legendre equation (note that a > 0).

Conversely, if (A, u,) is a nontrivial integral solution of the associated equa-
tion to the Legendre equation, then

=22 + (=ba)u® + (—ca)y? =0.
Multiplying by —a, we get
aX? +b(ap)? + c(ay)® =0,

50 (A, ap, ay) is a nontrivial integral solution of the Legendre equation (note
that @ > 0). O

Remark. The proof of Theorem 5.19 provides an explicit transformation of
solutions of the Legendre equation and solutions of the associated equation.
More precisely,

(1) if (A, p,y) is @ nontrivial integral solution of the Legendre equation, then
(—aX, u,7) is a non-trivial integral solution of the associated equation,
and
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(ii) if (A, p,y) is a nontrivial integral solution of the associated equation, then
(A, ap, a7y) is a nontrivial integral solution of the Legendre equation. O

Applying Legendre’s Theorem (Theorem 5.17) and Theorem 5.19, we may
also characterize the existence of solutions of the associated equation by means
of quadratic residues of its coeflicients. More precisely, we get the following
theorem.

Theorem 5.20. The associated equation to the Legendre equation has a non-
trivial solution if and only if (—ab) R (—ac), (—ac) R (—ab), and (—bc) Ra.

Proof: From Theorem 5.19 we know that the equation —22 4 (—ba)y® +
(—ca)z? = 0 has a nontrivial integral solution if and only if the Leg-
endre equation az? + by? + c2z2 = 0 has one. From Theorem 5.17 we
know that az? 4 by? + c22 = 0 has a nontrivial integral solution if and
only if (—bc)Ra, (—ac)Rb, and (—ab) R c. Observe that (—ac) R (—a) and
(—ab) R (—a) always hold; we see this by taking z = a for both cases in Def-
inition 5.12. Thus, from (—ac)Rb and (—ac) R (—a) and Lemma 5.13 (note
that ged(a, b) = 1 because of (5.5)) we get that (—ac) R (—ab). Similarly, from
(—ab)Re, (—ab)R (—a) and Lemma 5.13 we get that (—ab) R (—ac).
Conversely, we assume that (—ab) R (—ac), (—ac)R (—ab), and (—bc) Ra.
Then from Exercise 5.7 (iv) we deduce that (—ab) R ¢, (—ac) R b, and (—bc) R a.
Theorem 5.17 now implies that az? + by? + cz? = 0 has a nontrivial integral
solution. Because of Theorem 5.19 this means that the associated equation
—z% + (=ba)y? + (—ca)z? = 0 also has a nontrivial integral solution. O

Remark. Note that the conditions in Theorems 5.17 and 5.20 are equivalent.
a

In the previous theorems we have seen how to reduce the study of the
Legendre equation to its associated equation. In the next theorem we prove
that if the associated Legendre equation has a nontrivial integral solution,
then this solution can be determined algorithmically.

Theorem 5.21, If the associated equation to the Legendre equation has a
nontrivial integral solution, then it can be determined algorithmically.

Proof: Let us assume that —22 + (—ba)y?+ (—ca)z? = 0, the associated equa-
tion to the Legendre equation, has a nontrivial integral solution. By Theorem
5.20 we deduce that (—ab) R (—ca), {(—ca) R (—ab), and (—cb) R a. Let us first
deal with two special cases.

(1) If —ca =1 (that is a = 1 and ¢ = —1, see Definition 5.11), then (1,0,1) is
a nontrivial integral solution, and if —ba =1 (that isa =1 and b = —1,
see Definition 5.11), then (1,1,0) is a nontrivial integral solution.
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(2) Now consider the case —ca = —ba (that is ¢ = b = —1, see Definition
5.11). (—cb) R a means —1 R a, so by the Remark to Lemma 5.16 we can
determine algorithmically integers r and s, not both zero, such that a =
r2 + 2. Then, (r? + s2,s,7) is a nontrivial solution of —z2 + (—ba)y? +
(—ca)z? =0.

Now we treat the general case. W.l.o.g. we assume that —ba < —ca, i.e. =b <
—c. Otherwise we only have to interchange the roles of z and y. The strategy
will be the following: first, we find a squarefree integer A, with 0 < A < —ca,
and we consider the new equation Az% 4 (—ba)Y? = X2, where

—A(—ba)
ged(A. —ba)? © B4, —ba) .

AR(-ba), (—ba)RA, and
Thus, we reduce the given associated Legendre equation (—ca)z? + (—ba)y? =
z? to a new equation associated to some Legendre equation (see Remark to
Definition 5.18) having a nontrivial solution (see Theorem 5.20). Moreover,
we show that a solution of the old equation can be computed from a solution
of the new equation. After a finite number of steps, interchanging A and —ba
in case A is less than —ba (we are assuming that —ba < —ca), we arrive either
at the case A = 1 or at A = —ba, each of which has been treated in (1) or (2).
Since (—ba) R (—ca), we deduce that there exist «, k € Z such that

o = —ba+ k(—ca) .

Observe that we can always assume |a| < —ca/2. We express k = Am?,
where A,m € Z, and A is squarefree; note that A and m can be determined
algorithmically from the squarefree factorization of k (see Exercise 5.5). So
we have

a? = ~ba + Am?(—ca) .

First we show that 0 < A < —ca. From our assumption —ba < —ca we get

0 < a? = —ba + Am?(—ca) < —ca + Am?(—ca) = —ca(l + Am?) .

Neither A nor m can be 0, because otherwise o*> = —ba, which is impossible
(ged(a,b) = 1 and a,b are squarefree). Furthermore, —ca > 0 implies that
0<14Am?2,s0 A>0.

The relations a? = —ba + Am?(—ca), —ba > 0, and || < —ca/2 imply

)2
Am?(—ca) = a® 4+ ba < o® < ﬂ.

This finishes the proof of 0 < A < —ca.
Now we consider the new equation

AZ2 + (=ba)Y? = X2 |
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and we prove that this equation satisfies the same hypothesis as the equation
original equation (—ca)z? + (—ba)y? = z2. First, note that 4, —ba € Z*, and
they are squarefree. Now,we prove that

—~Alha) - R ged(4,—ba) ,  (5.7)

AR(-ba), (-ba)RA, and —E—s

which implies that AZ? + (—=ba)Y? = X? is associated to some Legendre
equation (see Remark to Definition 5.18). Observe that, by Theorem 5.20, we
deduce that the new equation has a nontrivial solution.

Let us prove that each of these relations hold.

(i) First we prove that AR(—ba). For this purpose, we show that AR(—a)
and ARb which implies, by Lemma 5.13, that AR (—ba). From o? =
~ba + Am?(—ca) and the squarefreeness of a we deduce that a divides a.
So if we set a; = —e/a, then a; € Z and

—ac? = b+ Am?c.

Hence,
A = - b
m C —a co .

Moreover, from —aa? = b+ Am?c and ged(a, b) = 1 we get ged(m,a) = 1.
Because of (—cb) R (—a) there exists y; € Z such that y? =_, —cb. Thus,

A=_q (m*) ()i,

where m* and ¢* are the inverses of m and ¢ modulo —a, respectively. m
and a are relatively prime, so are ¢ and a. Therefore, AR (—a).

Now we show that AR b. Because of (—ca) R (ab) there exists 8 € Z such
that 82 = (—ca). So from a? = —ab + Am?(—ca) we get

o? =p Am?(—ca) =p AM?*p? .

Observe that ged(8,b) = 1. Indeed, assume 1 # d = ged(8,b). Because
of A% =4 (—ca) there exists A € Z such that 5% = (—ca) + Ab. Therefore,
d divides ca, which is impossible because of ged(a,b) = ged(e,b) = 1.
Furthermore, note that by hypothesis a, b, ¢ are pairwise relatively prime,
so also ged(ca,b) = ged(m,b) = 1 (see Exercise 5.8). Putting all this
together, we get

a2(m*)2(u*)2 =, A ,

where u©*, and m* are the inverses of 8, and m modulo b, respectively.
Therefore, AR b.
(ii) The condition (—ba) R A follows from a? = —ba + Am?(—ca).
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(iii) Finally, we show that ﬁmﬁg R ged(A4, —ba) holds. Let r = ged(A4, —ba),
A1 = A/r and by = —ba/r. Then, we have to show that (—A1b;) R r. From
a? = —ba + Am?(—ca) we deduce that

o? = bir + Airm?(—ca) .
A is squarefree, so also r is squarefree, and hence that r divides a. So
Aym?(—ca) =, -by ,
which implies that
—A1bym?(—ca) =, b3 .

Note that by hypothesis a, b, ¢ are pairwise relatively prime, so by the same
reasoning as above ged(ca,r) = ged(m,r) = 1. From (—ca) R (—ba) and
bir = —ab we obtain (—ca) R r. Thus, there exists w € Z such that w? =,
(—ca). Observe that ged(w,r) = 1. Indeed, assume 1 # d = ged(w,r).
Because of w? =, (—ca) there exists A\ € Z such that w? = (—ca) + Ar.
Therefore, d divides to ca, which is impossible because of gced(ac,r) = 1.
Putting all this together, we get

—A1by =, B2(m*)2* =, b2(m*)?(w*)?

where v*, m* and w* are the inverses of —ca and m and w modulo r,
respectively. Therefore, (—A1b1) R 7.

So all the relations in (5.7) hold.

Finally, we show that if we have a nontrivial solution (X,Y,Z) of AZ? +
(=ba)Y? = X2 we can algorithmically determine a nontrivial solution (Z, , Z)
of (—ca)z? + (—ba)y® = z2. So assume

AZ} =X — (~ba)7" .
Then, taking into account that Am?(—ca) = a? — (—ba), we get
(—ca)(AZm)? = (X* ~ (—ba)V*)(o? — (~ba)) =

(Xa+ (=ba)Y)? — (—ba)(aY + X)* .
Thus,

T=Xa+(-ba)Y, F=aY +X, z=AZm,
is a solution of the equation (—ca)z? + (—ba)y? = z2. Clearly, (%,7,%) € Z3,
but we still have to prove that the solution is nontrivial. For this purpose, we
write the above equalities in matrix notation as:

T a—ba 0 X
g]l=|1a 0 Y
z 0 0 Am Z
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The determinant of the matrix is Am(a?—(~ba)). A > 0, m # 0 and a® # —ba
because gcd(a, b) = 1 and a, b are squarefree. So the determinant is non-zero.

Since (X,Y, Z) is nontrivial, (Z,7, %) is also nontrivial. O

In Theorems 5.19 and 5.20, we have seen how to decide whether the Leg-
endre equation has nontrivial solutions (see also the algorithmic comments
given after Definition 5.11), and the proof of Theorem 5.21 shows how to
compute a nontrivial solution of the Legendre equation, if there exists one. In
the following, assuming that the existence of nontrivial solutions has already
been checked, we outline an algorithm (derived from the proof of Theorem
5.21) for determining a nontrivial solution of the Legendre equation. To be
more precise, we assume that the equation is given in Legendre form (see (5.5)
and (5.6)). As above, we assume an algorithm “qr”, which for given inputs
m,n decides whether mRn, and in the affirmative case outputs x € Z such
that 22 =,, m. Furthermore, we represent by “oddf’ an algorithmic procedure
such that if k € Z*, then oddf(k) is a squarefree integer A satisfying k = Am?
with m € Z.

Algorithim ASSOCIATED LEGENDRE SOLVE

Given positive squarefree integers B, C such that the equation —z24+ By?+
Cz? = 0 has a nontrivial solution, the algorithm computes a nontrivial
integral solution (Z,7,Z) of the equation —z? + By? + C2% = 0.

1. If C =1, then set (Z,7,%) = (1,0,1), and go to Step 6.

2. If B =1, then set (z,7,%) = (1,1,0), and go to Step 6.

3. If C = B, then compute 7, s € Z* such that B = C = r? + 5% (see
Lemma 5.16 and the following remark). Set (Z,7,2) = (r? + s2,s,7),
and go to Step 6.

4. If C < B, then apply Algorithm ASSOCIATED LEGENDRE EQUA-
TION to the inputs C, B. Let (z1,¥1,21) be the solution obtained. Set
(Z,7,%) = (z1, 21,¥1), and go to Step 6.

5. If B < C, then compute

a=qr(B,C), k:=(®-B)/C, A:=oddf(k), m:=+/k/A.

Apply Algorithm ASSOCIATED LEGENDRE SOLVE to the inputs B, A.
Let (z1,y1,21) be the solution obtained. Set (Z,7,Z) = (azi +
By, ay; + 21, Amz1), and go to Step 6.

6. Return the point (%, 7, Z).
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Algorithm LEGENDRE SOLVE

Given integers a, b, ¢ defining the Legendre equation ax? + by? + cz? =0,
having nontrivial solutions (see Definition 5.11), the algorithm computes
a nontrivial integral solution (%, ¥, %) of the Legendre equation.

1. Compute the point (z1,¥1,21) obtained by applying the Algorithm
ASSOCIATED LEGENDRE SOLVE to the pair (—ba, —ca).
2. Return the point (%, 7,%) = (z1, ay1,a21).

Ezample 5.22. Consider the Legendre Equation
Q) Tx?-y?-32=0.

We show how to solve this equation by the Algorithm LEGENDRE SOLVE.
LEGENDRE SOLVE (7, -1, —3):

a:?, b=-—1, c=—3.

(STEP 1) ASSOCIATED LEGENDRE SOLVE (7,21):
B=7, C=21
(ii) — 22 4+ Ty? + 2122 =0.
(STEP 5) B < C, so
a=qr(7,21) =14, k=18T=9 A=1 m=3
ASSOCIATED LEGENDRE SOLVE (7,1):
B=17 (C=1
i) —22+T7y2+22=0.
(STEP 1) C=1, so
Return (1,0,1)  (Solution of (iii))
(#,9,2)=(14-1+7-0,14-0+1,1-3-1) = (14,1,3)
Return (14,1,3)  (Solution of (ii))
(STEP 2) (%,7,%) := (14,7,21)
Return (14,7,21)  (Solution of (i))

5.3 Optimal Parametrization of Rational Curves

We have seen how the theorem of Hilbert-Hurwitz (Theorem 5.8) can be
used to classify optimal fields of parametrization of a rational curve, and in
addition we have outlined an algorithm derived from the constructive proof of
its corollary. But the algorithm, although theoretically interesting, does not
have very satisfactory performance in practice. The reason is that, in general,
O(d) birational transformations are required in order to reach a conic or a
line and to invert either the simple points or the parametrization. Furthermore



